• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.032 seconds

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

A Study on the Prediction of Laser Spot Weld Shapes of Thin Stainless Steel Sheet (스테인레스 박강판의 레이저 점용접부 형상예측에 관한 연구)

  • Kang, H.S.;Hong, S.J.;Jun, T.O.;Jang, W.S.;Na, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.102-108
    • /
    • 1998
  • 본 논문에서는 Nd-YAG 레이저 용접 프로세스를 이용하여 두께가 다른 STS304스테인레스 박강판을 대상으로한 점용접에 관한 연구로서, 레이저 용접은 미소부위에 효율적인 접합가공이 가능한 공정으로 비접촉식 가열원을 이용하기 때문에 접합공정 중 기계적 변형이 없고, 레이저 빔을 국부가열원으로 하여 매우 좁은 부분에 제한적으로 열을 가할 수 있어서 강한 금속적 결합이 요구되는 소형부품의 접합에 이용될 수 있다. 뿐만 아니라 공정 변수들을 변화시켜 실제 접합부에 들어 가는 입열량을 쉽게 제어할 수 있다는 등 많은 장점을 가지고 있다. 본 연구에서는 1mm이하의 스테인레스 박판에 대한 레이저 점용접을 FDM과 신경회로망을 이용하여 해석하고 용접부의 너겟 크기, 용접부 깊이 등의 형상을 예측하였다. 또한 레이저 점용접에 있어서의 주요 변수인 펄스 에너지, 펄스 타임, 박판의 두께, 두 판사이의 간극크기 등득 변화시켜 실험하고 수치해석을 검증하기 위하여 여러 가지 강에 대한 레이저 점용접 실험을 수행하였다. 또한 수치해석 시뮬레이션을 위하여 윈도우 프로그래밍을 개발하였다.

  • PDF

Novel Collision Warning System using Neural Networks (신경회로망을 이용한 새로운 충돌 경고 시스템)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyun;Hwang, Jaeho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there are many researches on active safety system of intelligent vehicle. To reduce the probability of collision caused by driver's inattention and mistakes, the active safety system gives warning or controls the vehicle toward avoiding collision. For the purpose, it is necessary to recognize and analyze circumstances around. In this paper, we will treat the problem about collision risk assessment. In general, it is difficult to calculate the collision risk before it happens. To consider the uncertainty of the situation, Monte Carlo simulation can be employed. However it takes long computation time and is not suitable for practice. In this paper, we apply neural networks to solve this problem. It efficiently computes the unseen data by training the results of Monte Carlo simulation. Furthermore, we propose the features affects the performance of the assessment. The proposed algorithm is verified by applications in various crash scenarios.

Using GA-FSMC for Precise Water Level Control of Double Tank (GA-FSMC를 이용한 이중탱크의 정밀한 수위 제어)

  • 권용범;박현철;정종원;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.131-134
    • /
    • 2002
  • 일반적인 산업현장에서 많이 사용되는 이중탱크 시스템은 동작점 근방에서 선형화하는 고전제어기법을 사용한 것으로서 큰 시간지연과 비선형성으로 인해 정확한 수학적 모델링이 어렵고 모델링을 하더라도 넓은 동작 영역에서 만족스로운 결과를 얻기 어렵다. 따라서, 비교적 모델링에 대한 의존도가 낮은 퍼지, 신경회로망, 유전알고리즘 등의 지능제어 기법들도 제안되고 있다. 그러나 이들 제어기 역시 외란이나 다양한 동작 모드들에 따른 제어기 변수들의 적응성 저하로 인해 안정화 가능 영역이 협소해 지는 것은 물론 시스템의 불안정 현상도 초래한다. 이에 반해, SMC(sliding mode controller)는 변수의 변동, 외란에 둔감한 강점을 갖고 있지만, 시스템의 상태에 따른 슬라이딩 평면 설정의 곤란성과 채터링(chattering)이 존재하는 문제점 이 있다. 따라서 본 논문에서는 이중 탱크 시스템의 정밀한 수위 제어를 위하여, GA과 FLC를 사용하여 최적 변수로 설정 할 수 있게 하고, 채터링 저감을 위해 시스템 동특성 변동과 외란 에 강인한 GA-FSMC(genetic algorithm fuzzy sliding mode controller)를 제안하였다. 시뮬레이션을 통해 종래의 제어기의 제어결과와 비교함으로써 제안하는 GA-FSMC의 우수성을 입증하고자 한다.

A Neuro Fuzzy Controller Using Auto-tuning Width of Membership Function for Equipment Systems (설비시스템을 위한 소속함수 폭의 자동동조를 사용한 뉴로퍼지 제어기)

  • 이수흠;방근태
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The width of fuzzy membership function and control rule has an effect on performance of the fuzzy controller for electric equipment systems. In this paper, the neuro-fuzzy controller is proposed to im¬prove the performance of fuzzy controller. It has the width of membership function, that is adapted to the electrical parameter using multi-layer neural network, it is applied to first order electric power system with dead time and various plant constant. The related simulation resolts show that the pro¬posed neuro fuzzy controller are superior characteristics of improved performance

  • PDF

Real-time ULTC control strategy using the dynamic movement capability of LDC variables of artificial neural network (인공신경회로망의 LDC 변수 동적이동 능력을 이용한 실시간 ULTC 제어전략)

  • 고윤석;김호용;이기서;배영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.541-551
    • /
    • 1996
  • This study develops the real time ULTC(Under Load Tap Changer) control strategy with LDC setting values moved dynamically using artificial neural networks. The suggested strategy can improve the ULTC voltage compensation capability by building 2 types of neural networks, ANNs and ANNg. ANNs recognizes the uncompensated MTr sending voltage change caused by the receiving voltage variation. And ANNg dynamically determines the most appropriate ULTC setting valtage chanbe caused by the receiving voltage variation. And ANNg dynamically determines the most appropriate ULTC setting values by recognizing the voltage level obtained from ANNs, and the section load pattern for each time period. In order to evaluate the suggested approach, the ULTC voltage compensation strategy are simulated on a 8 feeder distribution system. Artificial neural networks developed in this study are implemented in FORTRAN language on PC 386.

  • PDF

Flood Estimation Using Neuro-Fuzzy Technique (Neuro-Fuzzy 기법을 이용한 홍수예측)

  • Ji, Jung-Won;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.128-132
    • /
    • 2012
  • 물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.

  • PDF

Design of Nonlinear Adaptive Controller using Wavelet Neural Network (웨이브렛 신경회로망을 이용한 비선형 적응 제어기 설계)

  • 정경권;김주웅;엄기환;정성부;김한웅
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.17-20
    • /
    • 2001
  • In this paper, we design a nonlinear adaptive controller using wavelet neural network. The method proposed in this paper performs for a nonlinear system with unknown parameters, identification with using a wavelet neural network, and then a nonlinear adaptive controller is designed with those identified informations. The advantage of the proposed control method is simple to design a controller for unknown nonlinear systems, because we use the identified informations and design parameters are positioned within a negative real part of s-plane. The simulation results showed the effectiveness of proposed controller design method.

  • PDF

Hybrid Control Method of Neural Network Using the 3-point Search Algorithm (3점 탐색 알고리즘을 이용한 신경회로망의 혼합제어방식)

  • 이승현;공휘식;최용준;유석용;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.13-16
    • /
    • 2000
  • In this paper, we propose hybrid control method of neural network using the 3-point search algorithm. Proposed control method is searched the weight using the 3-point search algorithm for off-line then control the on-line. In order to verify the usefulness of the proposed method, we simulated the proposed control method with one link manipulator system and confirmed the excellency.

  • PDF

Autonomous Tractor Guidance Using Machine Vision and Fuzzy Control (기계 시각과 퍼지제어를 이용한 트랙터의 자율주행)

  • 조성인;최낙진;강인성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.150-158
    • /
    • 1999
  • 해외 농산물의 개방에 대비해 국내 농산물의 국제 경쟁력 강화를 위한 방안 마련이 시급한 때에 농산물의 품질 향상 및 생산비 절감을 위하여 다양한 분야에서 연구가 진행되고 있다. 그 중 농업기계분야의 연구는 현장에서의 애로점을 해결하려는 자동화 및 무인화, 첨단기술을 이용한 고능률화 및 지능화에 관한 연구가 활발히 진행중이며 요소 기술로는 각종 센서와 신경회로망, 퍼지이론 등 인공지능 기술이 응용되고 있다. (중략)

  • PDF