• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.025 seconds

Sensorless MPPT Control of a Grid-Connected Wind Power System Using a Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 계통연계형 풍력발전 시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.484-493
    • /
    • 2011
  • The MPPT algorithm using neuro-fuzzy controller is proposed to improve the performance of fuzzy controller in this paper. The width of membership function and fuzzy rule have an effect on the performance of fuzzy controller. The neuro-fuzzy controller has the response characteristic which is superior to the existing fuzzy controller, because of using the optimal width of the fuzzy membership function through the neural learning. The superior control characteristic of a proposed algorithm is confirmed through simulation and experiment results.

Linear/nonlinear system identification and adaptive tracking control using neural networks (신경회로망을 이용한 선형/비선형 시스템의 식별과 적응 트래킹 제어)

  • 조규상;임제택
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, a parameter identification method for a discrete-time linear system using multi-layer neural network is proposed. The parameters are identified with the combination of weights and the output of neuraons of a neural network, which can be used for a linear and a nonlinear controller. An adaptive output tracking architecture is designed for the linear controller. And, the nonlinear controller. A sliding mode control law is applied to the stabilizing the nonlinear controller such that output errors can be reduced. The effectiveness of the proposed control scheme is illustrated through simulations.

  • PDF

Hybrid Position/Force Controller Design of the Robot Manipulator Using Neural Networks (신경회로망을 이용한 로보트 매니률레이터의 하이브리드 위치/힘 제어기 설계)

  • 조현찬;전홍태;이홍기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.897-903
    • /
    • 1991
  • In this paper we propose a hybrid position/force controller of a robot manipulator using feedback error learning rule and neural networks. The neural network is constructed from inverse dynamics. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained well, it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using PUMA 560 manipulator.

  • PDF

Sinusoidal Current Tracking Inverter Control with Neural Networks (신경회로망에 의한 정현파 전류 추종 인버어터의 제어)

  • 배상준;이달해;김동희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.219-226
    • /
    • 1994
  • Sinusoidal current tracking inverters have substantial advantages in high performance acdrive systems and various control strategies for the inverter have been proposed by several researchers. This paper develops a sinusoidal current tracking inverter with neural networks. The neural network are trained to follow a set of reference current waveforms by erro back propagation algorithm and the trained neural networks are applied to the current control. We compare neural networks method with conventional current control methods (fixed band and sinusiidal band hystersis methods) and simulation results are presented.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

Uncertainty-Compensating Neural Network Control for Nonlinear Systems (비선형 시스템의 불확실성을 보상하는 신경회로망 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1597-1600
    • /
    • 2010
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The composed of the control input by using RBF neural networks and auxiliary input to compensate for effects of the approximation errors and disturbances. In the results, using this scheme, the output tracking error between the plant and the reference model can asymptotically converge to zero in the presence of bounded disturbances and approximation errors. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

A study on the Alarm Processing System for Elevator Facility using Neural Network at Apartment (공동주택에서 신경 회로망을 이용한 승강기 계통 경보처리 시스템 개발 연구)

  • 홍규장;유건수;홍성우;정찬수
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.4
    • /
    • pp.92-99
    • /
    • 1997
  • This paper proposed a control method to improve the efficiency of monitoring method by applying the nural network for an alarm processing method(APM)in an elevator facility of apartment complex. This APM is based on the cumulative generalized delta rule of backpropagation in neural network.It was used to infer the minimum alarms among multi-fired alarms, and then the inferred alarm can be dis¬played maintenance information of facility by using a pre-defined troubleshoot knowledge base. For validating the proposed monitoring method of this thesis, simulation results are compared with the operation of existing monitoring system and the way of alarm processing. The simulation method used to the three case of virtual scenario. As comparison results, a proposed method in this paper could be proved the applied possibility of an neural network and the performance in fields of facilities maintenance.

  • PDF

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화적 학습)

  • 심인보;윤중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.

The Lateral Guidance System of an Autonomous Vehicle Using a Neural Network Model of Magneto-Resistive Sensor and Magnetic Fields (자기 저항 센서와 자기장의 신경회로망 모델을 이용한 자율 주행 차량 측 방향 안내 시스템)

  • 손석준;류영재;김의선;임영철;김태곤;이주상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.211-214
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\sub$x/, B$\sub$y/, B$\sub$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, learning itself, and the adequacy of the design controller. Also, the performance of the controller can be verified through simulation.

  • PDF