• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.037 seconds

Estimation of hardening depth using neural network in LASER surface hardening process (레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이의 측정)

  • 박영준;우현구;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, the hardening depth in Laser surface hardening process is estimated using a multilayered neural network. Input data of the neural network are surface temperature of five points, power and travelling speed of Laser beam. A FDM(finite difference method) is used for modeling the Laser surface hardening process. This model is used to obtain the network's training data sample and to evaluate the performance of the neural network estimator. The simulational results showed that the proposed scheme can be used to estimate the hardening depth on real time.

  • PDF

Approximation of the functional by neural network and its application to dynamic systems (신경회로망을 이용한 함수의 근사와 동적 시스템에의 응용)

  • 엄태덕;홍선기;김성우;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.313-318
    • /
    • 1994
  • It is well known that the neural network can be used as an universal approximater for functions and functionals. But these theoretical results are just an existence theorem and do not lead to decide the suitable network structure. This doubfulness whether a certain network can approximate a given function or not, brings about serious stability problems when it is used to identify a system. To overcome the stability problem, We suggest successive identification and control scheme with supervisory controller which always assures the identification process within a basin of attraction of one stable equilibrium point regardless of fittness of the network.

  • PDF

A solution to the inverse kinematic by using neural network (신경회로망을 사용한 역운동학 해)

  • 안덕환;이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.124-126
    • /
    • 1989
  • Inverse kinematic problem is a crucial point for robot manipulator control. In this paper, to implement the Jacobian control technique we used the Hopfield(Tank)'s neural network. The states of neurons represent joint veocities, and the connection weights are determined from the current value of the Jacobian matrix. The network energy function is constructed so that its minimum corresponds to the minimum least square error. At each sampling time, connection weights and neuron states are updated according to current joint position. Inverse kinematic solution to the planar redundant manipulator is solved by computer simulation.

  • PDF

신경회로망에 의한 로보트의 역 기구학 구현

  • 이경식;남광희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.144-148
    • /
    • 1989
  • We solve the inverse kinematics problems in robotics by employing a neural network. In the practical situation. it is not easy to obtain the exact inverse kinematics solution, since there are many unforeseen errors such as the shift of a robot base the link's bending, et c. Hence difficulties follow in the trajectory planning. With the neural network, it is possible to train the robot motion so that the robot follows the desired trajectory without errors even under the situation where the unexpected errors are involved. In this work, Back-Propagation rule is used as a learning method.

  • PDF

Estimation of weld pool sizes in GMA welding processes using a multi-layer neural net (다층 신경회로망을 이용한 GMA 용접 공정에서의 용융지 크기의 예측)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1028-1033
    • /
    • 1991
  • This paper describes the design of a neural network estimator to estimate weld pool sizes for on-line use of quality monitoring and control in GMA welding processes. The estimator utilizes surface temperatures measured at various points on the top surface of the weldment as its input. The main task of the neural net is to realize the mapping characteristics from the point temperatures to the weld pool sizes through training, A series of bead-on plate welding experiments were performed to assess the performance of the neural estimator.

  • PDF

Automatic Face Recognition Using Neural Network (신경회로망에 기초한 자동얼굴인식)

  • 김재철;이민중;김현식;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.417-417
    • /
    • 2000
  • This paper proposes a face detection and recognition method that combines the template matching method and the eigenface method with the neural network. In the face extraction step, the skin color information is used. Therefore, the search region is reduced. The global property of the face is achieved by the eigenface method. Face recognition is performed by a neural network that can learn the face property.

  • PDF

Switching Angle Determination IN SRM Drive by Numerical Analysis (수치해석에 의한 SRM의 적정 오.오프각 설정기법에 관한 연구)

  • Choo, Young-Bae;Park, Sung-Jun;Lee, Hwa-Seok;Kim, Chung-Tek
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2070-2072
    • /
    • 1998
  • 신경회로망을 사용하여 몇 가지 경우에 대해 측정된 토오크 프로파일로부터 모든 전류값 및 회전자위치각에 대한 토오크 및 인덕턴스를 구하였다. 이를 바탕으로 수치해석을 통해 토오크중첩을 고려한 총합 발생토오크의 맥동성분을 최소화시키는 기준토오크 파형을 설정하여 제어하였다. 또한 제안된 방식을 실시간으로 처리하고, 제어기의 신뢰성을 높이기 위해 DSP를 사용하였다.

  • PDF

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니플레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어)

  • 박양수;박윤명;최부귀
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a robot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Active Vibration Control of A Time-Varying Cantilever Beam Using Band Pass Filters and Artificial Neural Network (신경회로망과 능동대역필터를 이용한 시변 외팔보 능동 진동제어)

  • Hamm, Gil;Rhee, Huinam;Yoon, Doo Byung;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.353-354
    • /
    • 2014
  • An active vibration control technique of a time-varying cantilever beam is proposed in this study. A simple in-house coil sensor instead of expensive commercial sensors was used to measure the vibrational displacement of the beam. Active band pass filters and artificial neutral net works detect the frequencies, amplitudes, and phases of the main vibration mode. The time constants of the low pass filter representing the positive position feedback controller are updated in real-time, which generates the control voltage input to actuate the piezoelectric actuator and suppress the vibration. An experiment was successfully performed to verify the algorithm for a cantilever beam, which fundamental natural frequency arbitrarily varies between 9 Hz ~ 18 Hz. The present active vibration suppression technique can be applied to variety of structures which undergoes large variation of dynamic characteristics while operating.

  • PDF

Motion Control of an Uncertain robotic Manipulator System via Neural Network Disturbance Observer (신경회로망 외란 관측기를 이용한 불확실한 로봇 시스템의 운동 제어)

  • Kim, Eun-Tai;Kim, Han-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.6-15
    • /
    • 2002
  • A neural network disturbance observer for a robotic manipulator is derived in this paper. The neural network used as the disturbance observer is a feedforward MLP(multiple-layered perceptron) network. The uniform ultimate boundness(UUB) of the proposed neural disturbance observer and the control error within a sufficiently small compact set is guaranteed. This neural disturbance observer method overcomes the disadvantages of the existing adaptive control methods which require the tedious analysis of the regressor matrix of the given manipulator. The effectiveness of the proposed neural disturbance observer is demonstrated by the application to the three-link robotic manipulator.