• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.033 seconds

초고속 유도전동기 구동을 위한 신경회로망 제어기 설계 (Design of Neural Network Controllers for High Speed Induction Motor Drives)

  • 김윤호;이병순;성세진
    • 전력전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 1997
  • 초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.

  • PDF

가전제품의 지능형 제어를 위한 신경회로망 응용 (An Application of Neural Network for Intelligent Control of Home Appliances)

  • 이승구;윤상철;김주완
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.176-179
    • /
    • 1997
  • 본 논문은 입/출력 관계가 불명확한 가전제품 제어에 인공신경회로망을 응용하여 지능형 제어기를 구현하는 방법에 관한 것이다. 다층신경회로망을 사용하고 Error Back Propagation 학습방법에 의하여 학습되도록 한다. 제어대상물에서 알 수 있는 정보는 입력값과 이에 대응하는 출력값 뿐이며 입력과 출력에 대한 관계를 수학적으로 모델링하기 어려운 경우이다. 인공신경회로망을 이용한 제어를 위하여 Neural Network Emulator(NNE)와 Neural Network Controller(NNC)가 개발되며 각 신경회로망의 초기하중백터는 제어대상에 오프라인 학습으로 결정하고, 자동조절과정에서 온라인 학습하여 새로운 대상제품 상황에 적응하도록 설계되었다. 제안된 지능형 제어시스템은 PC를 이용하여 실시스템에 적용하여 검토되었다.

  • PDF

신경회로망을 이용한 헬리콥터 적응 비선형 제어 (Adaptive Nonlinear Control of Helicopter Using Neural Networks)

  • 박범진;홍창호;석진영
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2004
  • 본 논문에서는 광범위한 비선형 함수 근사 성질을 갖고 있는 온라인 적응 신경회로망을 이용하여 헬리콥터 비행 제어 시스템을 설계하였다. 기존의 시스템 모델링 오차를 보상하는 방식과는 달리, 시스템의 입출력 정보를 통해 피드백 선형화 기법에서 필요한 두 개의 비선형 함수를 신경회로망을 이용하여 대체하는 방법을 적용하였다. 두 개의 비선형 함수를 신경회로망으로 대체하여 구성된 폐회로 시스템의 추적 성능과 내부 안정성을 보장하기 위하여 신경회로망의 가중치 학습 방법을 리야프노프 함수를 이용하여 유도하였다. 그리고 헬리콥터 저속 비행 모드에 대한 수치 시뮬레이션 결과를 통해 신경회로망을 적용한 제어 시스템의 성능을 검증하였다.

신경회로망 보상기를 이용한 무인헬리콥터의 비선형적응제어 (Nonlinear Adaptive Control of Unmanned Helicopter Using Neural Networks Compensator)

  • 박범진;홍창호
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.335-341
    • /
    • 2010
  • PD 제어기 기반으로 설계된 무인헬리콥터의 내부루프 제어기의 성능을 향상시키기 위 하여 한 개의 신경회로망이 적용되었다. 오차방정식의 응답특성 기반으로 설계된 PD 제어기는 운동모델의 비선형성에 의해 성능이 저하된다. 이러한 비선형성은 운동모델로부터 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)로 분리되었고 신경회로망의 출력에 의해 보상되었다. 신경회로망의 학습에는 제어기 안정성 보장을 위하여 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 신경회로망에 의한 PD제어기의 성능향상은 비선형성을 갖고 있는 무인헬리콥터의 수치시뮬레이션 결과로 보였다.

직접신경회로망 제어기를 사용한 보일러 터빈시스템의 제어에 관한 연구 (A Study on the Direct Neural Network Controller of Boiler Turbine)

  • 우주희;김종만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.654-656
    • /
    • 1997
  • 본 논문에서는 직접신경회로망제어기(DNNC)를 사용하여 결합된 PI제어기의 이득을 구하여 보일러 터빈시스템을 제어하고자 한다. 직접신경회로망제어기는 플랜트의 동특성을 학습시키는 에뮬레이터 없이 제어입력에 대한 플랜트의 동작방향에 대한 정보만을 사용하여 신경회로망을 학습시키고, 이 신경회로망을 사용하여 제어대상 플랜트인 다중입출력플랜트를 제어하기 위하여 결합된 PI 제어기의 이득을 구한다. 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘의 타당성을 입증하고자 한다.

  • PDF

자기구성 신경회로망을 이용한 매니플레이터의 궤적제어에 관한 연구 (The Study on the Trajectory Control of Manipulator Using Self-Organizing Neural Network)

  • 김동희;신위재;주창복
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.145-148
    • /
    • 2001
  • 본 논문에서는 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 궤적제어기를 설계한다. 궤적 제어는 경유점을 정하고 각 경유점에 대한 역기구학을 적용하는 제어기로서 본 논문에서는 역기구학의 해를 자기구성 신경회로망을 통해 해결하는 제어기를 설계하고자 한 다. 또한 제어기에서의 은닉층의 활성화 함수는 가우 시안 함수를 사용하고, 은닉층의 파라미터는 오차를 기초로 하여 자동적으로 최적의 파라미터 값을 구함으로 서 유연한 궤적 제어가 되도록 한다.

  • PDF

신경회로망을 이용한 시스템 모델링 및 제어

  • 최진영;박현주
    • 제어로봇시스템학회지
    • /
    • 제1권3호
    • /
    • pp.62-73
    • /
    • 1995
  • 본 원고에서는 뉴로제어의 배경 및 필요성, 기본적인 뉴로제어 시스템구조 소개, 뉴로제어용 신경회로망 모델, 응용 예 등을 기술하고 앞으로 해결해야할 문제들을 고찰한다.

  • PDF

웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구 (The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller)

  • 이재현
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2365-2370
    • /
    • 2008
  • 본 논문에서는 비선형 시스템의 위치 제어를 위하여 웨이블렛 신경회로망 제어기를 구성하였으며, 웨이블렛 신경회로망은 LQR 제어기의 성능을 향상 시킬 목적으로 사용한다. 불안전한 비선형 시스템을 선형화 시키고 안정화된 선형 시스템을 만들기 위하여 LQR를 사용하며, 외란에 효과적으로 적응하기 위하여 웨이블렛 신경회로망 제어기를 사용한다. 이 제어기를 비선형 시스템의 위치 제어에 적용하여 실험을 통해 그 유효성을 검정하였다.

연속 시시템 모델링을 위한 칼만 필터링 기반 신경회로망 학습에 대한 기술 동향

  • 조현철
    • 제어로봇시스템학회지
    • /
    • 제17권3호
    • /
    • pp.22-26
    • /
    • 2011
  • 신경회로망 기술은 다양한 공학적 및 과학적 문제에 적용되어 왔으며 복잡한 동특성을 갖는 시스템의 모델링에 특히 효율적인 것으로 알려져 있다. 신경회로망 학습은 신경회로망의 가중치 및 바이러스로서 주어지는 파라미터 벡터의 요소를 주어진 목적함수를 최소화하는 최적의 값으로 추정하는 연산과정을 의미한다. 따라서 신경회로망 파라미터 학습은 전체시스템의 성능을 직접적으로 좌우하는 매우 중요한 단계라 할 수 있으며 일반적으로 파라미터의 수정규칙 알고리즘을 도출한다. 이러한 수정규칙은 주로 최적화 기법을 적용하며 경사함수(gradient function)를 포함한다. 최근에는 이러한 경사함수를 포함하지 않는 학습 알고리즘이 많이 개발되고 있으며 특히 칼만 필터링 이론을 접목한 미분 신경회로망의 학습 알고리즘이 최근에 발표되었다.