• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.027 seconds

Performance Comparison Between Neural Network Model and Statistical Models (통계적 모델과 신경회로망 모델의 성능 비교에 관한 연구)

  • Han, Seung-Soo;Kim, In-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2401-2403
    • /
    • 2000
  • 시스템의 특성을 이해하고 신뢰성 있는 제어를 위해서는 시스템에 대한 정확한 모델을 필요로 한다. 이러한 목적을 위해서 많은 연구자들에 의한 다양한 방법의 모델링 방법이 계속되어 연구되어지고 있다. 현재 많이 사용하는 모델링 방법 중에는 통계적 기법을 이용하는 것, first principle 방법을 이용하는 것, 지능형 기법을 이용하는 방법 등이 있다. 본 연구에서는 통계적 방법인 fractional factorial 방법을 이용한 모델, Taguchi 방법을 이용한 모델, 그리고 지능형 방법인 신경회로망을 이용한 모델의 3가지 모델을 사용해서 각 모델의 학습오차와 예측오차 등의 특성을 비교하였다. 모델에 사용된 데이터는 비선형 시스템인 플라즈마 화학 증착 장비(Plasma-Enhnaced Chemical Vapor Deposition : PECVD)에 의해 증착된 산화막 실험 데이터이다. 각 모델에 대해서 PECVD 데이터를 사용하여 모델을 만들었을 때 각 모델의 학습오차와 학습오차 변위, 그리고 예측오차와 예측오차변위를 조사하였다. 세가지 모델 모두 학습오차가 예측오차보다 작았으며 변위 또한 학습오차변위가 예측오차변위보다 작았다. 본 연구 결과는 일반적으로 신경회로망에 의한 오차가 다른 통계적인 방법에 의한 오차보다 작음을 보여준다.

  • PDF

Design of a Direct Self-tuning Controller Using Neural Network (신경회로망을 이용한 직접 자기동조제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.264-274
    • /
    • 2003
  • This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.

The Study on Dynamic Position Control base on Neural Networks, Image Processing and CAN Communication (신경회로망과 영상처리 및 CAN 통신기반의 동적 자세제어에 관한 연구)

  • Kim, Gwan-Hyung;Kwon, Oh-Hyun;Sin, Dong-Suk;Byun, Gi-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2499-2504
    • /
    • 2013
  • Applications of dynamic position control are especially focused on cancellation of unknown disturbance against nonlinear dynamic plants. Control performance is technically dependent upon observation methodology of such disturbance signals. This paper presents a novel control strategy by using linear actuators based on CAN communication networks. Disturbance is measured from placing a ball on a flat plant and image processing technique is applied to observe dynamic position of a ball system. We devise a neural network based PI control system to realize robust control of the dynamic system.

A Study on the attitude control of the quadrotor using neural networks (신경회로망을 이용한 쿼드로터의 자세 제어에 관한 연구)

  • Kim, Sung-Dea
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1019-1025
    • /
    • 2014
  • Recently, the studies of the Unmanned Aerial Vehicle(UAV) has been studied a variety from military aircraft to civilian aircraft and for general hobby activity aircraft. In particular, for small unmanned aircraft research for the ease of turning and hovering and Vertical-Off Take Landing(VTOL), have been studied mainly quadrotor unmanned aircraft is a type suitable for this study of small unmanned aircraft. The studies of these unmanned aircraft is the kinetic analysis requires complex processes, because these support by the aerodynamic forces on the unmanned aircraft study, and the controller design based on these dynamical analysis and experimental model analysis. In this paper, after the implementation of the basic attitude control based on a general PID controller, we propose concept design of the attitude control method on quadrotor attitude control by using the reinforcement learning algorithm of neural networks for non-linear elements not considered in the controller design.

적응 퍼지제어

  • 공성곤;김민수
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.101-108
    • /
    • 1995
  • 이 글에서는 퍼지제어기의 기본 구성에 대해 간단히 다루고 모델에 근거해 다음 제어상태를 예견해 내는 제어기법인 모델참조 적응을 기반으로 한 적응 퍼지제어에 대해서, 그리고 신경회로망을 이용한 퍼지제어기의 파라미터의 조정과 클러스터링을 통해서 퍼지규칙을 예측하는 적응 퍼지제어기에 대해서 살펴보았다.

  • PDF

The Position Control of Induction Motor using Reaching Mode Controller and Neural Networks (리칭모드 제어기와 신경 회로망을 이용한 유도전동기의 위치제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.72-83
    • /
    • 2000
  • This paper presents the implementation of the position control system for 3 phase induction motor using reaching mode controller and neural networks. The reaching mode controller is used to bring the position error and speed error trajectories toward the sliding surface and to train neural networks at the first time. The structure of the reaching mode controller consists of the switch function of sliding surface. And feedforward neural networks approximates the equivalent control input using the reference speed and reference position and actual speed and actual position measured form an encoder and, are tuned on-line. The reaching mode controller and neural networks are applied to the position control system for 3 phase induction motor and, are compared with a PI controller through computer simulation and experiment respectively. The results are illustrated that the output of reaching mode controller is decreased and feedforward neural networks take charge of the main part for the control action, and the proposed controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

  • PDF

A Study on the Fault Tolerant Control System for Aircraft Sensor and Actuator Failures via Neural Networks (신경회로망을 이용한 항공기 센서 및 구동장치 고장보완 제어시스템 설계에 관한 연구)

  • Song, Yong Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2003
  • In this paper a neural network-based fault tolerant control system for aircraft sensor and actuator failures is considered. By exploiting flight dynamic relations a set of neural networks is constructed to detect sensor failure and give alternative signal for the faulty sensor. For actuator failures another set of neural networks is designed to perform fault detection, identification, and accomodation which returns the aircraft to a new stable trim. Integrated system is simulated to show the performance of the system with sensor and control surface failures.

  • PDF

Rotor Resistance Estimation of Induction Motor by ANN (ANN에 의한 유도전동기의 회전자 저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-34
    • /
    • 2006
  • This paper proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

Implementation of Evolving Neural Network Controller for Inverted Pendulum System (도립진자 시스템을 위한 진화형 신경회로망 제어기의 실현)

  • 심영진;김태우;최우진;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-76
    • /
    • 2000
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of conventional techniques such as the pole placement and the optimal control based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Thus, in this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algorithm(RVEGA) was presented for stabilization of an IP system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. And the proposed ENNC was implemented successfully on the ADA-2310 data acquisition board and the 80586 microprocessor in order to stabilize the IP system. Through the simulation and experimental results, we showed that the finally acquired optimal ENNC was very useful in the stabilization control of IP system.

  • PDF