• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.029 seconds

Air-Fuel Ratio Control of Automobile Engines in Steady States by Neural Networks (신경회로망을 이용한 정상상태에서의 자동차 엔진의 공연비제어)

  • 최종호;원영준;고상근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2119-2125
    • /
    • 1992
  • An air-fuel ratio control method is studied to keep the air-fuel ratio of the exhaust gas in the neighborhood of the stoichiometric air-fuel ratio to maximize the conversion efficiency of the three-way catalytic converter. Estimators, which estimate the air-fuel ratio of the exhaust gas, are proposed using neural networks to overcome the limit of the presently used bang-bang type exhaust gas oxygen sensor. Using these estimators, PI controller for air-fuel ratio control is designed and is experimented for an automobile engine. The proposed controller reduces the variation of air-fuel ratio of the exhaust gas from the stoichiometric air-fuel ratio by 50%-75% when compared to the existing controller.

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Theoretical Analysis on the Variance Learning Algorithm (분산학습알고리듬의 이론적 분석)

  • 조영빈;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.141-150
    • /
    • 1997
  • 분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.

  • PDF

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계)

  • 이정철;이홍균;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for the speed control of interior permanent magnet synchronous motor(IPMSM) drive. The design of this algorithm based on FNN controller that is implemented by using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights among the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strongly high performance and robustness in parameter variation, steady-state accuracy and transient response.

Design of Neuro Controller for Improving Velocity Control of AC Motor (AC MOTOR의 속도제어 개선을 위한 신경망제어기의 설계)

  • 설재훈;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.243-248
    • /
    • 1995
  • 본 논문에서는 신경회로망의 학습능력을 이용하여 AC 모터의 속도제어에 이용된 기 존의 PI제어기의 문제점을 보완하고자 한다. 기존의 아날로그 PI제어기에서는 각 비례, 적분 파라메타를 개발자가 조정하여 고정하면 부하가 변동될 경우 적응성이 떨어지는 문제점을 안고 있었다. 본 논문에서 제시된 디지털 신경망제어기는 학습을 통해 새로운 환경에 적응 가능하다는 점에 가정하여 설계하고 성능을 비교 평가하였다. 본 논문에서 사용된 신경회로 망의 구조는 신경망중에서 가장 범용적으로 사용되는 다층 퍼셉트론 모델구조를 선택하였 다. 신경망 제어기장치로는 인텔 8097 마이크로 콘트롤러를 이용하였다.

  • PDF

Learning Control Based on CMAC Neural Networks (CMAC 신경회로망을 기반으로 한 학습제어)

  • Yoo, J.J.;Chung, T.J.;Choi, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1993
  • CMAC 신경회로망은 다차원 비선형 함수를 학습을 통하여 발생되는 많고 복잡한 데이터들을 퍼셉트론과 같이 집합시켜 메모리를 구성하고 처리하는 분야이다. 일반적으로 학습알고리즘은 소수의 반복으로써 수렴한다. 본고에서는 CMAC의 메카니즘 및 CMAC의 특성을 기술하고, CMAC의 학습가능성을 예시하였다. CMAC의 학습성능을 시험하기 위해서 3관절 로봇의 squatting 문제에 적용하였다.

Recurrent Networks for Real-time Electrical Transmission (실시간 전기정보 전송을 위한 순환망 알고리즘)

  • Kim, Jong-Man;Kim, Yeong-Min;Kim, Won-Sop;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.255-257
    • /
    • 2008
  • 초고속 전기정보의 전송 시대와 U-정보전자시대에 응용하는 최신 정보기기와 의료기기 및 군사정보의 실시간 전송을 위하여 많은 실시간 알고리즘과 모델링의 연구가 필수적이다. 또한 원격지에 많은 전기 및 전력정보를 비선형적 특성이 있는 환경하에서도 정보의 오차가 없이 실시간으로 전송하는 기술은 현대 정보사회에서 해결해야 할 매우 중요한 요소중에 하나이다. 이러한 내용으로 수행되어지는 신경회로망을 이용한 실시간 모델링을 제안하고자 한다. 이와 관련한 일반적인 방법으로 역전파 학습 알고리즘을 들 수 있다. 파라미터에도 덜 민감하며, 특히 온라인으로 인식과 제어가 가능하도록 수렴속도를 향상 시켜야하는 새로운 모델의 필요성이 요구된다. 본 연구에서는 기존의 신경회로망이 가지고 있는 여러 단점들을 개선하고자 새로운 학습 알고리즘과 새로운 구조의 신경회로망을 제시한다. 또한 제시한 알고리즘을 이용하여 불규칙적 시스템 모델망과 다양한 센서 모델링 등에 연결하여 다양한 실험을 수행하여 그 결과를 보여 실시간 특성을 갖는 것을 입증해 보였다.

  • PDF