• Title/Summary/Keyword: 신경회로망 자기동조

Search Result 29, Processing Time 0.021 seconds

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Auto-Tuning PID Control with Self-feedback Neurons (자기 궤환 뉴런을 가진 자동 동조 PID 제어)

  • Jung, Kyung-Kwon;Kim, Kyung-Soo;Gim, Ine;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.348-354
    • /
    • 1999
  • In recent years, a PID controller has been used as a major control method in real control processes. This controller requires a determination of PID control gains. But it is difficult to select the best gains theoretically. Thus there have been many approaches to determine them empirically Most of them are based on experience and knowledge. In this paper, we proposed a tuning method of the PID Parameters by using neural network. To show effectiveness of the proposed method, the simulation of DC motor and one link manipulator position control is carried out.

  • PDF

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

A Study on the Load Frequency control of Power System Using Neural Network Self Tuning PID Controller (신경회로망 자기종조 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구)

  • 정형환;김상효;주석민;김경훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.29-38
    • /
    • 1998
  • This paper proposes the neural network self-tuning PID controller for the load frequency control of 2- areas power system, namely, the prompt convergence of frequency and tie-line power flow deviation. The neural network applied to computer simulation consists of neurons of two inputs, ten hiddens and tliree outputs layer. Neurons of two inputs layer receive the error and its change rate of the system and cutputs layer consists of three neurons for the parameters of the PID controller. The simulation results shows that the proposed neural network self-tuning PID controller is superior to conventional control t~:chniques(Optimal, PID) in dynamic response and control performance.

  • PDF

Design of a Direct Self-tuning Controller Using Neural Network (신경회로망을 이용한 직접 자기동조제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.264-274
    • /
    • 2003
  • This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications