• Title/Summary/Keyword: 신경세포

Search Result 1,682, Processing Time 0.031 seconds

Effect of Epimedium Koreanum Nakai on GO-Induced Neurotoxicity in Cultured Mouse Spinal Dorsal Root Ganglion Neurons (Glucose Oxidase에 의(依)하여 손상(損傷)된 배양척수감각신경절세포(培養脊髓感覺神經節細胞)에 대(對)한 음양곽(淫羊藿)의 효과(效果))

  • Park Seung-Taeck;Lee Ho-Sub;Yun Yong-Gap;Park Byung-Rim
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.143-151
    • /
    • 1999
  • To evaluate the neurotoxic effect of oxygen radicals in cultured mouse spinal dorsal root ganglion(DRG) neurons, cytotoxicity was determined by MTT assay after cultured DRG neurons were grown in the media containing various concentrations of glucose oxidase(GO). In addition, neuroprotective effect of herb extract, Epimedium Koreanum Nakai was examined by MTT assay in cultured DRG neurons. Cell viability of cultured DRG neurons was remarkably decreased by GO in dose- and time-dependent manner, and Epimedium Koreanum Nakai protected remarkably GO-induced neurotoxicity in these cultures. From the above results, it is suggested that oxygen radicals is toxic in cultured mouse DRG neurons, and herb extracts such as Epimedium Koreanum Nakai are effective in prevention of the neurotoxicity induced by oxygen radicals in cultured mouse DRG neurons.

  • PDF

Neuroprotective effects of Salacca wallichiana extract against glutamate-induced oxidative stress in mouse Hippocampal HT22 cells (쥐 해마 HT22 세포에서 글루타메이트 유도 산화 스트레스에 대한 Salacca wallichiana 추출물의 신경 보호 효과)

  • Ji Hun Byeon;Ye Yeong Hong;Jungwhoi Lee;Thet Thet Mar Win;Su Su Hlaing;Song-I Han;Jae Hoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.250-257
    • /
    • 2023
  • Glutamate is an excitatory neurotransmitter distributed in the central nervous system of mammals. However, high concentrations of glutamate are known to cause neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and stroke by causing nerve cell death. In this study, the antioxidant activity and neuroprotective effect of subtropical natural products were analyzed. Among 11 subtropical plant extracts mainly tested, Sallacca wallichiana extract (SE) showed the greatest free radical scavenging activity. Then, we confirmed through WST-1 assay that SE protected HT22 cells against glutamate-induced cell death in a concentration-dependent manner. The protective effects of SE against glutamate-induced apoptosis in HT22 cells were also confirmed by flow cytometry analysis using Annexin V/PI double staining. We also confirmed using H2DCF-DA single staining that SE inhibits glutamate-induced intracellular reactive oxygen species. And we were confirmed through that SE inhibited glutamate-induced phosphorylation of Mitogen-activated Protein kinases. Consequently, our results propose that SE may contribute to the development of therapeutics to prevent neurodegenerative diseases.

Immunocytochemical Localization of Melanopsin-immunoreactive Neurons in the Mouse Visual Cortex (생쥐 시각피질에서 melanopsin을 가지는 신경세포의 면역조직화학적 위치)

  • Lee, Won-Sig;Noh, Eun-Jong;Seo, Yoon-Dam;Jeong, Se-Jin;Lee, Eun-Shil;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • Melanopsin is an opsin-like photopigment found in the small proportion of photosensitive ganglion cells of the retina. It is involved in the regulation of the synchronization of the circadian cycle as well as in the control of pupillary light reflex. The purpose of the present study is to investigate whether melanopsin is also expressed in the other areas of the central visual system outside the retina. We have studied the distribution and morphology of neurons containing melanopsin in the mouse visual cortex with antibody immunocytochemistry. Melanopsin immunoreactivity was mostly present in neuronal soma, but not in nuclei. We found that melanopsin was present in a large subset of neurons within the adult mouse visual cortex with the highest density in layer II/III. In layer I of the visual cortex, melanopsin-immunoreactive (IR) neurons were rarely encountered. In the mouse visual cortex, the majority of the melanopsin-IR neurons consisted of round/oval cells, but was varied in morphology. Vertical fusiform and pyramidal cells were also rarely labeled with the anti-melanopsin antibody. The labeled cells did not show any distinctive distributional pattern. Some melanopsin-IR neurons in mouse visual cortex co-localized with nitricoxide synthase, calbindin and parvalbumin. Our data indicate that melanopsin is located in specific neurons and surprisingly widespread in visual cortex. This finding raises the need of the functional study of melanopsin in central visual areas outside the retina.

Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells (인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선)

  • Jeong, Da Hee;Joe, I-Seul;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1355-1359
    • /
    • 2016
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) can differentiate into various cell types including osteoblasts, adipocytes, chondrocytes, and myocytes. Previous studies, including our own, have shown that MSCs can also differentiate into neuron-like cells. However, their rate of neuronal differentiation is not sufficient for application to stem cell therapy, which requires well-defined cell types. For this purpose, we first examined the expression of neuronal lineage markers (GFAP, MAP-2, KCNH1, Nestin, NF-M, and Tuj-1) by real-time PCR, western blot, and immunocytochemical staining. The expressions of the astrocyte marker GFAP and neuronal markers NF-M and Tuj-1 increased in neuronal differentiated MSCs (dMSCs). To improve the neuronal differentiation efficiency, PDE4, an important signaling intermediator in the progression of neuronal differentiation, was modulated using well-known inhibitors such as rolipram or resveratrol and then differentiated into neuronal cells (Roli- or RSV-dMSCs). The expressions of NF-M, Tuj-1 were increased while that of GFAP decreased in Roli- and RSV-dMSCs, which were examined by real-time PCR, western blot, and immunocytochemical staining. From these experiments, we have found that the neuronal differentiation efficiency can be ameliorated by the modulation of PDE4 activity.

Effect of Deep Seawater on Expression of μ-Opioid Receptor in Cultured Rat Hippocampal Neurons (배양된 쥐 해마신경세포에서 μ-아편양 수용체의 발현에 대한 해양심층수의 영향)

  • Moon, Il-Soo;Kim, Seong-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.176-182
    • /
    • 2011
  • Deep seawater (DSW) generally refers to seawater at depths equal to or greater than 200 meters. DSW is rich in inorganic materials which have attracted attention for its various applications. In this study we investigated the effects of the DSW upwelled from the East Sea, offshore Yang Yang (KangWon-do, Korea), on the expression of ${\mu}$-opioid receptor (MOR) of cultured rat hippocampal neurons. Neurons were grown in a minimal essential medium containing 10% (v/v) fetal bovine serum and either 25% (v/v) distilled water, or hardness (H) 800, or H 1000 DSW. Cultures grown in the presence of DSW with H 800 and H 1000 exhibited robust MOR immunoreactive signals in both neurons and astrocytes. Interestingly, the increase in MOR immunoreactive signals was more dramatic in astrocytes than in neurons. Statistical analysis revealed that the relative intensities for MOR clusters increased approximately 4-fold in astrocytes cultured in H 800 and H 1000 media. These increases were statistically very significant (p<0.001). In contrast, the increase in intensities for MOR immunoreactive signals was relatively less dramatic in neurons, where only the increase in the H 1000 culture was statistically very significant (p<0.001). These results indicated that DSW promotes expression of MOR in both neurons and astrocytes, and more significantly in the latter.

신경회로망의 VLSI구현

  • 정호선
    • 전기의세계
    • /
    • v.38 no.2
    • /
    • pp.39-52
    • /
    • 1989
  • 본고에서는 우선 미국에서의 Neural Chip에 대한 개발현황에 대해서 고찰하고자 하며, 신경 세포를 실현하는데 어려운 문제점인 신경 세포간의 연결세기를 나타내는 어려운 문제점인 신경 세포간의 연결세기를 나타내는 Synapse를 구현하는 방법과 자극과 억제에 해당하는 입력 신호를 가해주는 방법에 대해서 소개하고자 한다. 그리고 국내 대학에서 연구한 결과로서 문자 인식을 하기 위한 영상처리의 전처리 과정인 잡음제거, 세선화, 특징점 추출에 대해서 신경회로망을 이용한 Chip 설계 방법과 4-bit A/D변환기, 4-bit가산기, 5 * 5 곱셈기, 그리고 Associative Memory를 VLSI로 구현하는 방법에 대해서 소개하고자 한다.

  • PDF

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system (신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법)

  • Lee, Hyun-Sook;Cho, Sun-Jung;Jung, Yong-Wook;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.198-203
    • /
    • 2007
  • DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.

Effects of Taeumin Chungsimyeunjatang on the Cerebral neurons injured by Hydrogen Peroxide (태음인(太陰人) 청심연자탕(淸心蓮子湯)이 Hydrogen Peroxide에 손상(損傷)된 백서(白鼠)의 대뇌신경세포(大腦神經細胞)에 미치는 영향(影響))

  • Ok, Yun-young;Ryu, Do-gon;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.251-266
    • /
    • 1999
  • 1. Purpose : The purpose of this study was to determine the effects of Chungsimyeunjatang on the cerebral neurons injured by hydrogen peroxide($H_2O_2$). 2. Methods : I observed cell viability in mouse cerebral neurons exposed to hydrogen peroxide by NR assay and MTT assay and determined lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. After administration of Chungsimyeunjatang water extracts, I observed significant changes of cell viability, lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. 3. Results : Hydrogen peroxide showed neurotoxicity. Cell viability in mouse cerebral neurons exposed to hydrogen peroxide decreased in NR assay and MTT assay. Lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide increased. Chungsimyeunjatang was very effective in blocking hydrogen peroxide-induced neurotoxicity.

  • PDF

A Study on the Effects of Sodium Salicylate on the Spiral Ganglion Cells (살리실산 나트륨이 백서 와우의 나선신경절에 미치는 영향에 대한 연구)

  • Lee, Byung-Lan
    • Applied Microscopy
    • /
    • v.18 no.1
    • /
    • pp.92-102
    • /
    • 1988
  • The ototoxic effects of salicylate on the ultrastructure of spiral ganglion cells were examined. Sodium salicylate($50{\sim}60\/kg$ body weight, once a day for 7 days) were injected subcutaneously to $5{\sim}6$ week-old fifteen Sprague-Dawley rats. Animals were sacrificed 24 hours (group 1), 6 weeks (group 2) or 10 weeks (group 3) after the last injection. In group 1 animals, distention of membranous cisternae was found in the cytoplasm of ganglion cells, satellite cells and Schwann cells in which enlargement or multicystic cytosome formation of the mitochondria were shown. In group 2 animals, membranous cisternae became larger or fused to form larger vacuoles or cysts. Shrinkage of spiral ganglion cell cytoplasm and loosening of myelin sheath were seen. In group 3 animals, extensive swelling or loss of nerve fibers were shown along with the folding or partial loss of myelin sheath which caused leakage of ganglion cell cytoplasm. It was concluded that the ototoxicity of salicy-late caused the ultrastructral changes of the spiral ganglion cells which became more severe in group 2 and 3 animals. The possibility of retrograde degeneration following the sensory cell changes was suggested.

  • PDF

Neuroscience I : neural encoding and decoding (신경과학 I : 신경신호 인코딩과 디코딩)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.59-62
    • /
    • 2006
  • 전산 신경과학은 신경 시스템을 생물물리학, 신경회로, 그리고 시스템 레벨 등 여러 가지 관점에서 크기와 구조를 모델링하여 신경 신호의 전달과 전달되는 정보의 내용을 이해하고자 하는 분야이다. 전산 신경과학은 기존의 생물학적인 신경과학 연구에 대한 보완적인 연구방법으로 이론적이고 계산적인 방법을 사용한다. 본 논문에서는 신경 세포에서 반응 인코딩에 해당되는 신호 발생율(firing rate)과 스파이크 통계(spike statistics)를 설명하고, 신경 세포에서 반응 디코딩에 해당되는 스파이크-트레인 디코딩(spike-train decoding)에 대하여 설명한다.

  • PDF