• Title/Summary/Keyword: 신경세포사멸

Search Result 122, Processing Time 0.03 seconds

Protective Effects of Glycyrrhiza uralensis Radix Extract and Its Active Compounds on H2O2-induced Apoptosis of C6 Glial Cells (H2O2로 유도된 C6 신경교세포의 세포사멸에 대한 감초 추출물과 감초 활성물질의 보호효과)

  • Park, Chan Hum;Kim, Ji Hyun;Choi, Seung Hak;Shin, Yu Su;Lee, Sang Won;Cho, Eun Ju
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.315-321
    • /
    • 2017
  • Background: Glycyrrhiza uralensis Radix (GR) is a crude drugs used in Asian countries that has been reported to prevent the progression of neurodegenerative diseases such as Alzheimer's disease. The present study examined whether GR and its active compounds, glycyrrhizic acid (GA) and isoliquiritigenin (IL), exerted protective effects on $H_2O_2$-induced oxidative damage in C6 glial cells. Methods and Results: We exposed C6 glial cells to hydrogen peroxide ($H_2O_2$) for 24 h and investigated the cellular response to GR and its active compounds by evaluating cell viability, reactivie oxygen species (ROS) production, and apoptosis-related protein expression. GR successfully mitigated the reduced cell viability and ROS production induced by $H_2O_2$ in C6 glial cells, IL and GA significantly increased the cell viability and decreased ROS production. In addition, IL and GA down-regulated apoptotic Baxdependent caspase-3 activation, but each compound exerted different mechanisms, i.e., IL dose-dependently decreased ROS production and, GA up-regulated anti-apoptotic Bcl-2 expression. Conclusions: These results demonstrated that GR and its active components, IL and GA, exhibit potential for use as natural neurodegenerative agents for the modulation of apoptosis in C6 glial cells.

Inhibitory Effect of Lonicera japonica Thunb. Flower Buds against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neurons (HT22 신경세포에서 금은화 추출물에 의한 글루타메이트 유도 산화적 스트레스 및 세포사멸 억제 효과)

  • Jun, Chang-Hwan;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2021
  • Objectives : In this study, we investigated the neuroprotective effects of ethanol extract of Lonicera japonica flower buds (EELJ) on glutamate-induced neurotoxicity in mouse hippocampus-derived neuronal HT22 cells. Methods : After analyzing the cytoprotective effect of EELJ on glutamate in HT22 cells, the inhibitory effect of apoptosis was studied using flow cytometry. In order to analyze the antioxidant efficacy of EELJ, the levels of reactive oxygen species (ROS) and glutathione (GSH) were investigated, and the effects on the activities of superoxide dismutase (SOD) and catalase (CAT) were also analyzed. Furthermore, the effect of EELJ on the expression of apoptosis regulators such as Bax and Bcl-2 in glutamate-treated HT22 cells was investigated. Results : According the current results, pretreatment with EELJ significantly reduced glutamate-induced loss of cell viability and release of lactate dehydrogenase. EELJ also markedly attenuated glutamate-induced generation of intracellular ROS, which was associated with increased levels of GSH, and activity of SOD and CAT in glutamate-stimulated HT22 cells. In addition, EELJ was strikingly inhibited glutamate-induced apoptosis in HT22 cells. Furthermore, the expression of pro-apoptotic Bax was increased and the expression of anti-apoptotic Bcl-2 was decreased in glutamate-treated HT22 cells, while in the presence of EELJ, their expressions were maintained at the control levels. Conclusions : These findings indicate that EELJ protects glutamate-induced cytotoxicity in HT22 hippocampal neurons through antioxidant activity. Therefore, although identification of biologically active substances of EELJ and re-evaluation through animal experiments is necessary, this natural substance is a promising candidate for further research in preventing and treating oxidative stress-mediated neurodegenerative diseases.

고 선량율 근접 및 온열치료 병용 삽입관의 제작과 특성

  • 추성실;김성규
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.52-52
    • /
    • 2003
  • 악성종양을 치료하는 방법중 방사선과 온열요법은 가장 강력한 치료방법으로 연구되어왔으며 이를 병용함으로 서 상승효과를 얻을 수 있다. 인체조직에 41$^{\circ}C$ 이상의 열을 가하면 세포질의 단백질변성으로 세포에 손상을 주어 세포가 사멸하게 되며 세포의 생존율은 가열시간 즉 열량에 따라 지수적으로 감소한다. 온열은 세포주기중 방사선 저항성이 매우 큰 DNA 합성시기와 산도가 높을 때 감수성이 매우 크기 때문에 방사선과 병용요법은 상호 상승효과를 가져온다. 이와 같이 온열을 이용한 악성종양의 치료가능성은 생물학적 기초연구와 임상시험에서 경이적인 효과를 얻을 수 있었으나 아직 까지 가열방법과 온도분포측정이 큰 과제로 남아있으며 주위건강조직의 가열을 피하면서 인체 깊은 곳에 존재하는 종양에만 집중 가열하는 방법인 삽입형 온열치료방법에 대한 연구가 집중되었다. 한편 방사선 치료방법은 주위 건강조직의 피폭을 최소로 줄이고 종양에만 집중 조사가 요구되며 자궁암, 유방암, 뇌암등 부피가 작고 집중적 치료를 요하는 종양은 방사성동위원소를 이용한 근접 삽입치료 (Brachyradiotherapy)가 큰 효과를 나타내고 있다 방사선과 온열의 병행 치료를 위하여 방사선 삽입 치료에 사용한 선원 삽입관을 그대로 두고 삽입관 속에 방사성 동위원소 대신 온열 전극을 넣어 열을 가하는 방사선 온열 병용치료방법을 고안하였으며 방사선과 온열병용에 사용할 최적 삽입관의 제작과 이에 따른 온도분포의 측정과 최적삽입방법을 결정하였다. 방사선 삽입치료용 폴리에찌렌 삽입관의 외부에 금박을 입혀 라디오파 첨극을 삽입할 때 서로 연결되도록 고안 제작함으로서 방사선 삽입치료와 자입식 온열치료를 동시에 만족하게 수행할 수 있는 병용삽입관 (Flexible thermoradiotherapy probes)을 제작하였다. 전도율이 큰 금박부위가 직접 조직에 접촉됨으로 라디오파의 전달이 용이하며 금박의 길이를 2 cm 에서 5 cm 로 구분제작 함으로서 종양의 크기와 모양에 따라 선택할 수 있도록 하였다. 라디오파를 이용한 온열분포의 측정은 인체조직과 전기적 특성이 비슷한 물질인 한천 팬텀 제작하여 사용하였으며 온도분포 측정은 열전대와 서머그람으로 시행하였다. 생체조직 내에서의 온도분포와 온열효과를 관찰하기 위하여 직접 개의 뇌를 이용하여 시행하였으며 4 개의 전극을 이용하여 43$^{\circ}C$로 50분간 가열하고 일주일후 개를 회생시켜 개 뇌에 대한 조직학적 검사를 시행하였다. 한편 팬텀 표면에서 중앙부로 안테나 길이가 2 cm 인 4 개의 전극을 1 cm 간격으로 정사각형이 되도록 삽입하여 가열하였을 때 90% 등온곡선이 반경 1.25의 원형으로 균일하게 분포되었고 종단면상 삽입관의 길이에 따라 균일한 온도분포가 이루어졌다. 전극을 2 cm 간격으로 삽일 하였을 때 90% 등온곡선이 1.75 반경으로 거의 4 각형의 균일한 분포를 얻었으나 전극의 간격이 증가하면 전도율이 떨어져서 전극 중심부에 불균일한 온도분포를 형성하였다. 동물실험에서 정상 개의 뇌 실질에 자입하여 직접 정방형의 중심을 43$^{\circ}C$로 유지하며 50분간 온열 요법을 시행한 후 관찰한 조직병리학적 소견은 liquefactive necrosis, pyknosis of neuronal element 및 polymorphonuclear leukocytes들의 회백질에서 급성기에 관찰되었고 liquefactive necrosis 주위에 lipid-laden macrophage들이 관찰됨이 공통적인 특정이었으며 후기변화로 괴사조직 주위로 신경교세포의 증식이 관찰되었다.

  • PDF

Extraction of anti-microalgal material from Laminaria spp. and effect of oligo-alginate derivatives on membrane potential (다시마 유래 항미세조류 물질 추출 및 알긴산 올리고 유도체의 막전위에 대한 영향)

  • Lee, Gunsup;Chang, Man;Shin, Kyoungsoon;Kim, Donggiun;Auh, Chung-Kyoon;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6196-6202
    • /
    • 2012
  • Oligo-alginate derivatives were extracted from brown algae and its antimicroalgal effects and reaction mechanism were investigated. Oligo-alginate derivatives were produced from sequential hydrolysis of high molecular weight alginate by treatment of 2 N HCl and 1% $H_2O_2$. Antimicroalgal activity of extracts was proportional to reaction time and activity was highest at 4 hrs. When oligo-alginate derivatives were treated to Akashiwo sanguinea and Cochlodinium polykrikoides, mobilities of cells were ceased. A. sanguinea cells were crushed and plasmolysis was induced in C. polykrikoides cells. To investigate the action mechanism of oligo-alginate derivatives, changes of intracellular (pHi) and extracellular pH (pHe) were determined in the microalgal cells exposed to 0.05% of oligo-alginate derivatives. pHi was decreased about 0.3 unit and pHe was increased about 0.9 unit. These results suggested that change of membrane potential by oligo-alginate derivatives could led to microalgal cell death.

Effect of growth hormone on neuronal death in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (신생 흰쥐 해마 절편 배양에서 산소-포도당 박탈에 의한 신경 세포 사망에 대한 성장호르몬의 효과)

  • Hong, Kyung Sik;Gang, Jihui;Kim, Myeung Ju;Yu, Jeesuk;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.588-593
    • /
    • 2009
  • Purpose : To investigate whether growth hormone (GH) has a protective effect on neurons in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (OGD). Methods : Cultured hippocampal slices of 7-day-old rats were exposed to OGD for 60 min. Then, the slices were immediately treated with three doses of GH (5, 50, or $500{\mu}M$) in media. The relative fluorescent densities of propidium iodide (PI) uptake in the slices and relative lactate dehydrogenase (LDH) activities in the media were determined and compared between each GH- treated group of slices and untreated slices (control) at 12 and 24 h after OGD. Immunofluorescent staining for caspase-3 and TUNEL staining were performed to observe the effect of GH on apoptotic neuronal death. Results : The relative fluorescent densities of PI uptake in CA1 and dentate gyrus (DG) of the hippocampal slices in each GH-treated group were not significantly different from those in the untreated slices at 12 and 24 h after OGD (P>0.05). Treatment with GH could reduce the relative LDH activities in the media of the GH-treated groups only at 12 h after OGD (P<0.05). Expression of caspase-3 and TUNEL positivity in CA1 and DG of the slices treated with 50-iM GH were not different from those of the untreated slices at 12 and 24 h after OGD. Conclusion : Treatment of hippocampal slice cultures with GH after OGD does not show a definitive protective effect on neuronal death but can reduce the LDH efflux of the slices in media at 12 h after OGD.

Mitochondrial Dysfunction and Cancer (미토콘드리아 기능 이상과 암)

  • Han, Yu-Seon;Jegal, Myeong-Eun;Kim, Yung-Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1034-1046
    • /
    • 2019
  • The mitochondria is the major cellular organelle of energy metabolism for the supply of cellular energy; it also plays an important role in controlling calcium regulation, reactive oxygen species (ROS) production, and apoptosis. Mitochondrial dysfunction causes various diseases, such as neurodegenerative diseases, Lou Gehrig's disease, cardiovascular disease, mental disorders, diabetes, and cancer. Most of the diseases are age-related diseases. In this review, we focus on the roles of mitochondrial dysfunction in cancer. Mitochondrial dysfunction induces carcinogenesis and is found in many cancers. The factors that cause mitochondrial dysfunction differ depending on the types of carcinoma, and those factors could cause cancer malignancy, such as resistance to therapy and metastasis. Mitochondrial dysfunction is caused by a lack of mitochondria, an inability to provide key substances, or a dysfunction in the ATP synthesis machinery. The main factor associated with cancer malignancy is mtDNA depletion. Mitochondrial dysfunction would leads to malignancy through changes in molecular activity or expression, but it is not known in detail which changes lead to cancer malignancy. In order to explore the relationship between mitochondrial dysfunction and cancer malignancy in detail, mitochondria dysfunctional cell lines are constructed using chemical methods such as EtBr treatment or gene editing methods, including shRNA and CRISPR/Cas9. Those mitochondria dysfunctional cell lines are used in the study of various diseases caused by mitochondrial dysfunction, including cancer.

Ameliorating effect of the ethyl acetate fraction of Pteridium aquilinum on glucose-induced neuronal apoptosis (포도당으로 유도된 신경세포 손상에 대한 고사리 아세트산에틸 분획물의 개선 효과)

  • Park, Seon Kyeong;Guo, Tian Jiao;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Kwon, Bong Seok;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.430-437
    • /
    • 2017
  • The protective effect of Pteridium aquilinum on high glucose-induced cytotoxicity was examined in vitro to investigate the relationship between diabetic condition and neuronal dysfunction. The ethyl acetate fraction of P. aquilinum (EFPA), with total phenolic content of 265.08 mg gallic acid equivalent/g, showed higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and lipid peroxidation inhibitory effect than any other fraction. In addition, EFPA showed a significant reduction in the inhibitory effect on ${\alpha}$-glucosidase activity ($IC_{50}$ value=$205.26{\mu}g/mL$) compared to the acarbose positive control. The anti-oxidative effect in PC12 cells, protective effects on high glucose-induced oxidative stress in neuronal cells, and neurotoxicity were measured using 2',7'-dichlorofluorescin diacetate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide, and lactate dehydrogenase assays, respectively. EFPA showed conspicuous inhibitory effect on cellular reactive oxygen species production and neuronal cell apoptosis. Finally, kaempferol-3-glucoside was identified as the main phenolic compound of EFPA using high performance liquid chromatography.

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Neuroprotective Effects of Bread Containing Cirsium setidens or Aster scaber (곤드레 또는 참취를 함유한 빵의 뇌신경 보호효과)

  • Kwon, Ki Han;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • This study investigated the neuroprotective effects of bread containing extract from Cirsium setidens (CS) or Aster scaber (AS) against $H_2O_2$-induced death of human brain neuroblastoma SK-N-SH cells. Treatment with bread containing extract from CS (CSB) or AS (ASB) reduced $H_2O_2$ cytotoxicity in SK-N-SH cells, the intracellular ROS level, and the phospho-p38 mitogen-activated protein kinase (MAPK) level. In the sensory evaluation, wild vegetable flavor scores of CSB were higher than those of ASB and bread containing 0% CS or AS (NB). In terms of appearance, color, flavor, softness, and overall acceptability, CSB and ASB showed higher scores than NB, but no differences were observed between CSB and ASB. These results indicate that CSB and ASB have potent health benefits in terms of neuroprotection against oxidative stress mediated through antioxidant activity and inhibition of p38 phosphorylation in brain neural cells. Thus, CS and AS could be considered as a health functional material.

The Anti-Proliferation and Oxidative Damage-Related Mechanism of L-Carnitine in Human Colorectal Cancer Cells (L-carnitine에 의한 인간대장암세포주 증식억제 및 산화적손상 기전 규명)

  • Lee, Jooyeon;Park, Jeong-Ran;Jang, Aera;Yang, Se-Ran
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.303-308
    • /
    • 2019
  • L-carnitine is found in high levels in muscle tissues. It has been developed as a nutrient and dietary supplement, and also used as a therapeutic supplement in various diseases including type II diabetes, osteoporosis and metabolic neuropathies. However, it is not fully understood how it affects cellular mechanisms in colorectal cancer. Therefore, we attempted to determine the effect of L-carnitine in HCT116 human colorectal cancer cells. First, the HCT116 cells were exposed to L-carnitine for 24 hours at 0-40 mM, and then analyzed for cellular proliferation, oxidative stress and related mechanisms. In a MTT assay, L-carnitine inhibited cellular proliferation and induced reactive oxygen species (ROS) in HCT116 by DCF-DA analysis. To analyze the mechanism of L-carnitine in colorectal cancer cells, we performed a western blot analysis for pERK1/2 and pp38 MAP kinase. The western blot showed that L-carnitine significantly increased protein levels of pERK1/2 and pp38 compared with control. Taken together, we found that L-carnitine has anti-proliferative function via increased ROS and activation of ERK1/2 and p38 pathway in HCT116. These findings suggest that L-carnitine may have an anti-proliferative role on colorectal cancer.