• Title/Summary/Keyword: 신경생리

Search Result 1,239, Processing Time 0.028 seconds

Modification of Insect Sodium Currents by a Pyrethroid Permethrin and Positive Cooperativity with Scorpion Toxins (피레스로이드계 살충제 퍼메트린이 Heliothis virescens 중추신경세포에 있는 나트륨채널에 작용하는 기작을 전기생리학적으로 연구)

  • Lee, Daewoo;Adams, Michael E.
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.117-128
    • /
    • 2022
  • In this study, we have examined pyrethroid actions on sodium channels in the pest insect Heliothis virescens. The synthetic pyrethroid permethrin increased steady-state sodium current in H. virescens central neurons and prolonged tail currents (INa-tail) due to extreme slowing of sodium channel deactivation. Prolongation of INa-tail was evident at permethrin concentrations as low as 60 nM, which modified ~1.7% of sodium channels and 10 μM permethrin modified about 30% of channels. The average time constant (τ1) of tail current decay was ~335 ms for permethrin-modified channels. These modified channels activated at more negative potentials and showed slower activation kinetics, and failed to inactivate. Permethrin modification of sodium channels was dramatically potentiated by the α scorpion toxin LqhαIT, showing positive cooperativity between two binding sites. The amplitude of the tail current induced by 0.3 μM permethrin was enhanced ~8-fold by LqhαIT (200 pM). Positive cooperativity was also observed between permethrin and the insect-specific scorpion toxin AaIT as 10 nM permethrin potentiated the shift of voltage dependence caused by AaIT (~2-fold).

특집 : 미세혈관 합병증 - 당뇨병은 혈관병 - 당뇨병은 혈관에 어떤 영향을 미칠까?

  • 사단법인 한국당뇨협회
    • The Monthly Diabetes
    • /
    • s.259
    • /
    • pp.14-16
    • /
    • 2011
  • 당뇨병을 장기간 앓게 되면 혈관이 분포한 모드 조직 또는 기관을 침범하는 임상 증후군이 발생하는데 이를 당뇨병의 만성 합병증이라고 부른다. 당뇨병 만성 합병증의 기본적인 병리생리는 혈관 질환이며 침범하는 장기와 혈관의 크기에 따라 다음과 같이 분류된다. 눈에 생기는 망막증, 신장에 생기는 신장병증, 신경 특히 말초신경에 발생하는 신경병증들은 미세혈관의 손상에 따라 발생하므로 미세혈관 합병증이라고 부르며 심장에 생기는 협심증, 뇌혈관 경색으로 대표되는 뇌졸중, 하지 동맥폐색증은 대혈관 합병증이라고 부른다.

  • PDF

신경세포의 전기적 속성과 수학적 모델

  • 서병설
    • The Magazine of the IEIE
    • /
    • v.5 no.2
    • /
    • pp.31-40
    • /
    • 1978
  • 신경섬유는몸체 안에서 정보의 전달을 액숀 포텐셜(action potential) 형태의 신호(signal)에 의해 수행하고 있다. 우리 몸체에서 두뇌의 지령을 받아 어떠한 동작을 근육에 신경을 통하여 전달하는 것을 생각할 때 두뇌는 정보의 원천(source)으로서, 근육과의 신경접점은 리시버(receiver)로서, 신경섬유는 전화선으로서 간주될 수 있다. 그리고 몸체·안에서의 정보의 전달의 원리는 통신공학이론에 의하여 설명되어 질 수 있다. 저자는 생리학에 깊은 지식이 없어 전자공학분야에 종사 하시는 분들을 위해 이 재미있는 생물학적 현상을 설명할 수 있는 신경조직의 구조(mechanism)와 수학적 모델을 소개하고자 한다. 저자는 독자가 신경조직의 구조의 이해를 위해 액숀 포텐셜(action potential)의 구조를 소개하고 수학적 모델를 위해서는 호지킨-헉슬리 방정식 (Hodgkin-Huxley equation)과 케이불 방정식 (cable equation)을 설명하려고 한다.

  • PDF

Changes of the Excitability of the α-Motor Neuron by Taping (테이핑에 의한 α-운동 신경원 흥분도 변화)

  • Ahn, So-Yoon;Kim, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.167-174
    • /
    • 2008
  • The application of tape is being widely used for treatment of the musculoskeletal disorders and injury prevention. The techniques of the tape application has been relied on empirical evidence in preference to the neurophysiological evidence. Thus, the mechanism of taping has to be elucidated further. In this study, we assessed the effect of the elastic and non-elastic tape upon the gastrocnemius ${\alpha}$-motor neuron excitability using the gastrocnemius H-reflex. The amplitude of the M-wave and H-reflex were measured across three conditions: before tape application, with tape and with the tape removed. No significant changes of the excitability of the ${\alpha}$-motor neuron were obtained across three condition, either in the elastic and non-elastic tape. This results were quite different with other recent studies, which needs to be explored further.

Calretinin-Immunoreactive Amacrine Cells and Ganglion Cells in the Greater Horseshoe Bat, Rhinolophus ferrumequinum (한국관박쥐망막에서 칼레티닌 면역반응성의 무축삭세포 및 신경절 세포에서의 관찰)

  • Jeon, Young-Ki;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.133-139
    • /
    • 2007
  • Although the physiological roles of calretinin have not been established, it may simply work as a calcium buffer or may actively work in calcium-mediated signal transduction. Calretinin plays a little role in the transport and physiological buffering of calcium in the adult photoreceptor cells, bipolar cells and horizontal cells of the human retina. We identified the calretinin-immunoreactive neurons in the inner nuclear cell layer and ganglion cell layer and the distribution pattern of the labeled neurons in the retina of a bat, Rhinolophus ferrumequinum, in this study. We observed the existence of calretinin-immunoreactive AII amacrine cell in the inner nuclear layer and ganglion cells in the ganglion cell layer of bat retina through this study. This observation must be significant along with our previous studies as we need to study for more understanding about the unsolved issue of a bat vision and the unique behavioral aspects of bat flight maneuverability.

  • PDF

Transcranial Magnetic Stimulation in Gilles de la Tourette Syndrome (뚜렛 증후군에서의 경두개 자기자극술)

  • Lee, Moon-Soo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • Gilles de la Tourette syndrome is a chronic motor and vocal tic disorder of childhood onset. Abnornmalities in basal ganglia-thalamo-cortical circuits may play an important role in the pathophysiology underlying the involuntary tics. It is often complicated by comorbid attention-deficit/hyperactivity disorder or obsessive-compulsive disorder. Transcranial magnetic stimulation(TMS) is a neurophysiologic technique with research ap-plication. As there is good evidence that this technique can modify cortical activity, repetitive TMS is also used for treatment to change the cortical excitability and therefore affect underlying interconnected cortical-sub-cortical loop. We reviewed the neurophysiologic parameters and the clinical applicability of TMS and rTMS.

  • PDF

IMMUNOHISTOCHEMICAL STUDY ON THE DISTRIBUTION OF NERVES IN THE PERIODONTAL LIGAMENT OF A DOG'S PRIMARY TEETH (유치 치주인대 신경분포에 관한 면역조직화학적 연구)

  • Lee, Won-Jae;Gu, Dae-Hak;Bae, Yong-Chul;Kim, Young-Jim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.21 no.2
    • /
    • pp.439-455
    • /
    • 1994
  • The purpose of this study was to investigate the distribution of nerves in the periodontal ligament of a dog's primary teeth by each developing stage. The distribution of nerves in the periodontal ligament were investigated by means of immunohistochemistry for detection of neurofilament protein (NFP). The results were as follows: The NFP-immunoreactive nerve fibers were found to be densely distributed in the apical third of the periodontal ligament, while they were sparse in the coronal two third, in both primary and permanent teeth. In generally the density of distribution and degree of arborization of nerve fibers in periodontal ligament of primary teeth revealed a poor appearance compared with that of permanent teeth. Periodontal ligament in anterior teeth showed more abundant nerve innervation than posterior teeth, and the periodontal ligament of the bifurcation area in posterior teeth roots were not observed to have nerve fiber. The density of nerve distribution in the periodontal ligament of primary teeth was reduced according to the physiological root resorption and nerve fibers were not observed in the surrounding area on the root of the exfoliation stage in primary teeth. The distribution of nerve fibers in mucogingival tissue, was poor innervated according to the aging of the dogs. A more abundant distribution of nerve fiber was represented in the lingual mucogingival tissue than in the labial side. Most of the nerve endings in the periodontal ligament of primary teeth showed a tree-like appearance. However, the typical Ruffini-like nerve endings were not observed.

  • PDF