Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.
1931년 Burman은 주관절의 제한된 관절 공간, 관절낭 팽창의 어려움, 삽입구 주변에 근접한 신경-혈관 구조물에 의해 주관절 관절경은 불가능하다고 보고하였다. 비록 1935년 자신이 다시 여러 번 시도 끝에 주관절 전방 관절낭을 관절경으로 관찰한 후 주관절도 관절경적 접근이 가능하다는 점을 처음으로 언급하였지만 1980년대 중반까지도 몇몇의 보고를 제외하고 주관절 관절경에 대한 관심은 매우 적었다. 그 후 주관절 관절경은 관절경 기구들의 발달과 소관절을 위한 소구경 관절경의 발전과 함께 하였다. 1985 Andrew와 Carson이 supine position에서 전외측, 전내측 그리고 후외측 삽입구를 이용하여 주관절을 관찰하였으며 1989년 Poehling은 후방 주관절 접근이 용이하도록 prone position으로 관절경을 시행하였고 최근 새로운 접근 방법 및 확대된 적응증에 대한 보고가 점점 늘어나고 있다. 주관절 관절경의 합병증은 적지만 주관절 주변의 해부학적 구조물에 대한 정확한 이해를 가지고 있어야 심각한 합병증을 발생을 예방할 수 있다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.41-44
/
2017
기계이해 시스템은 주어진 문서를 이해하고 질의에 해당하는 정답을 출력하는 방법으로 심층 신경망을 활용한 주의집중 방법이 발달하면서 활발히 연구되기 시작했다. 본 논문에서는 어휘 정보를 통해 문서와 질의를 이해하는 어휘 이해 모델과 품사 등장 정보, 의존 구문 정보를 통해 문법적 이해를 하는 구문 이해 모델을 함께 사용하여 기계이해 질의응답을 하는 Dual Bi-Directional Attention Flow모델을 제안한다. 한국어로 구성된 18,863개 데이터에서 제안 모델은 어휘 이해 모델만 사용하는 Bi-Directional Attention Flow모델보다 높은 성능(Exact Match: 0.3529, F1-score: 0.6718)을 보였다.
최근 생명공학 분야의 기술이 혁신적으로 발달함에 따라 게놈 프로젝트가 본래 계획보다 2년 앞당겨져 2003 년 4 월 인간 유전자의 완전한 서열을 밝히고 성공적으로 완료됨으로서 관련 연구자들은 인간의 유전자에 대한 대량의 서열 데이터를 얻게 되었다. 그래서 게놈 프로젝트의 다음 단계로서 엄청난 양의서열 정보 분석으로부터 유전자의 기능을 파악하고자 하는 연구들이 이미 세계적으로 활발히 진행되고 있다. 이러한 연구들의 최종적 목표는 질병 치료와 생명연장의 실현이라고 볼 수 있다. 유전자 연구를 위해선 우선 일차적으로 유전자 부위를 파악해야 한다. 유전자는 구조적으로 다시 여러 부분으로 나뉘는데 유전자 발현의 개시에 매우 중요한 요소 중 하나가 바로 프로모터 (Promoter) 이다. 프로모터 내에는 TATA box 가 있는데 이는 프로모터의 핵심 요소이다. 프로모터는 생명체의 종 그리고 RNA 중합효소의 종류에 따라 다르다. 이 논문에서는 다양한 신경망 알고리즘 중의 하나인 Backtpropagation 을 이용하여 밝혀지지 알은 서열에서 인간을 포함하는 원핵생물의 프로모터 서열을 예측할 수 있는 방법을 얻었기에 소개하고자 한다.
햅틱스(Haptics)란 사람에게 촉감을 전달하는 방법을 연구하는 것에 관한 학문이다. 컴퓨터와 정보통신 기술의 발달과 함께 촉각 인터페이스는 시각/청각을 넘어선 새로운 정보 전달의 수단으로 대두되고 있다. 햅틱스의 연구분야는 크게 촉각을 전달하기 위한 물리적 장치를 일컫는 햅틱 인터페이스, 사람이 느끼는 촉감의 메커니즘을 연구하는 신경과학 및 심리학, 촉감을 모델링하기 위한 햅틱 렌더링, 그리고 햅틱스 기술을 적용한 응용시스템의 개발로 나눌 수 있다. 본 고에서는 현재 햅틱스 관련 연구분야의 세계적인 기술 수준을 소개 및 분석하고, 보다 사실적인 촉감을 전달하기 위한 연구동향을 기술한다. 또한 향후 햅틱스 기술이 응용될 주요 연구 분야를 예측해 본다.
컴퓨터 통신기술 발달에 따라 철도의 열차제어에 대한 기술도 기존의 궤도회로기반에서 무선통신기반으로 변화되고 있다. 국내에서도 도시철도용 무선통신기반 열차제어시스템의 개발이 진행됨에 따른 개발품의 성능평가에 대한 관심이 높아지고 있다. 따라서 본 논문에서는 새롭게 개발되는 무선통신기반 열차제어시스템의 성능평가를 위해 성능시험 항목의 선정과 현장에서의 시험을 위한 시험선로 지상 및 차상인프라 구축에 대한 기본적인 검토를 기반으로 시험 및 성능평가 시행의 종합기본계획을 수립하는 검토를 수행하였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.223-226
/
2017
인터넷의 발달로 인하여 네트워크 공격이 점차 발전되며 여러 가지 공격 기법들이 생겨나고 이러한 기법들은 혼합하여 사용하는 등 변칙적인 해킹기법들이 생겨나고 있다. 이로 인하여 침입 탐지 시스템(Intrusion Detection System, IDS)은 기존의 알려진 공격에 대해서만 탐지하고 변칙된 새로운 패턴의 공격을 탐지하지 못하는 경우가 생겨나고 있다. 이 문제에 적합한 해결책을 찾고자 여러 가지 알고리즘들이 연구되었고, 아직도 활발히 진행되고 있다. 본 글에서는 이러한 연구된 알고리즘들을 비교해 보았고 효율적인 방법을 제안한다.
Seo, Min Ji;Shin, Hee Jin;Kim, Myung Ho;Park, Jin Ho
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.769-770
/
2017
최근 데이터 기술의 발달에 따라, 기업에서는 중요 데이터를 서버와 같은 데이터 저장 장치에 보관하고 있다. 하지만 기업 내부 직원에 의해 기업의 기밀 데이터가 유출될 수 있는 위험성이 있기 때문에, 내부 직원에 의한 데이터 유출을 탐지 및 방지해야 할 필요성이 있다. 따라서 본 논문에서는 각 보안 솔루션에서 수집한 보안 로그를 데이터 유출 시나리오를 바탕으로 시계열 그래프로 작성하여, 이미지 인식에 뛰어난 성능을 보이는 합성곱 신경망을 통해 데이터 유출을 탐지하는 시스템을 제안한다. 실험 결과 유출된 데이터의 크기에 상관없이 95% 이상의 정확도를 보였으며, 복합적인 행동을 통해 데이터 유출을 시도한 경우에도 97% 이상의 정확도를 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.916-919
/
2017
최근 딥러닝의 발달로 인해 Sentiment analysis분야에서도 다양한 기법들이 적용되고 있다. 이미지, 음성인식 분야에서 높은 성능을 보여주었던 Convolutional Neural Networks (CNN)은 최근 자연어처리 분야에서도 활발하게 연구가 진행되고 있으며 Sentiment analysis에도 효과적인 것으로 알려져 있다. 기존의 머신러닝에서는 lexicon을 이용한 기법들이 활발하게 연구되었지만 word embedding이 등장하면서 이러한 시도가 점차 줄어들게 되었다. 그러나 lexicon은 여전히 sentiment analysis에서 유용한 정보를 제공한다. 본 연구에서는 SemEval 2017 Task4에서 제공한 Twitter dataset과 다양한 lexicon corpus를 사용하여 lexicon을 CNN과 결합하였을 때 모델의 성능이 얼마큼 향상되는지에 대하여 연구하였다. 또한 word embedding과 lexicon이 미치는 영향에 대하여 분석하였다. 모델을 평가하는 metric은 positive, negative, neutral 3가지 class에 대한 macroaveraged F1 score를 사용하였다.
기계이해 시스템은 주어진 문서를 이해하고 질의에 해당하는 정답을 출력하는 방법으로 심층 신경망을 활용한 주의집중 방법이 발달하면서 활발히 연구되기 시작했다. 본 논문에서는 어휘 정보를 통해 문서와 질의를 이해하는 어휘 이해 모델과 품사 등장 정보, 의존 구문 정보를 통해 문법적 이해를 하는 구문 이해 모델을 함께 사용하여 기계이해 질의응답을 하는 Dual Bi-Directional Attention Flow모델을 제안한다. 한국어로 구성된 18,863개 데이터에서 제안 모델은 어휘 이해 모델만 사용하는 Bi-Directional Attention Flow모델보다 높은 성능(Exact Match: 0.3529, F1-score: 0.6718)을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.