• Title/Summary/Keyword: 신경망 피치제어기

Search Result 3, Processing Time 0.02 seconds

Neural Network Pitch Controller of Wind Turbine using Changing Rate of Generator Speed (발전기 속도 변화율을 이용한 신경망피치제어기)

  • Hong, Min-Ho;Kim, Ho-Chan;Huh, Jong-Chul;Kang, Min-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.366-371
    • /
    • 2014
  • The neural network pitch controller using changing rate of generator speed has been suggested in this paper to regulate wind turbine power above the rated wind speed. The changing rate of generator speed is used in the suggested pitch controller as well as the difference between the rated and current generator speed. Matlab/simulink has been used for simulations and it has been shown that the suggested pitch controller regulates generator speed as the rated speed of 122.9[rad/s].

Pitch Angle Controller of Wind Turbine System Using Neural Network (신경망을 이용한 풍력 발전시스템의 피치제어)

  • Hong, Min-Ho;Ko, Seung-Youn;Kim, Ho-Chan;Hur, Jong-Chul;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1059-1065
    • /
    • 2014
  • Wind turbine system can obtain the maximum wind energy using torque control under the rated wind speed, and wind turbine power is controlled as the rated power using pitch control over the rated wind speed. In this paper, we present a method for wind turbine pitch controller using neural networks. The purpose of the pitch control is to control generator speed and power in the above rated wind speed. To improve the neural network pitch controller, the difference between a rated and current speed of generator has been used for another input of neural networks as well as wind speed. Error back-propagation algorithm is used for training the neural network pitch controller and simulation and Matlab/Simulink is used for verifying that this system is controlled well.

Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube (라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화)

  • Lee, Kwangk-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1065-1071
    • /
    • 2012
  • Wind energy is becoming one of the most preferable alternatives to conventional sources of electric power that rely on fossil fuels. For stable electric power generation, constant rotating speed control of a wind turbine is performed through pitch control and stall control of the turbine blades. Recently, variable pitch control has been implemented in modern wind turbines to harvest more energy at variable wind speeds that are even lower than the rated one. Although wind turbine pitch controllers are currently optimized using a step response via the Ziegler-Nichols auto-tuning process, this approach does not satisfy the requirements of variable pitch control. In this study, the variable pitch controller was optimized by a genetic algorithm using a neural network model that was constructed by the Latin Hypercube sampling method to improve the Ziegler-Nichols auto-tuning process. The optimized solution shows that the root mean square error, rise time, and settle time are respectively improved by more than 7.64%, 15.8%, and 15.3% compared with the corresponding initial solutions obtained by the Ziegler-Nichols auto-tuning process.