시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.
자기 조직화 신경망 (SOM: Self-Organizing Map)은 자율 학습 신경망으로 사전 지식이 존재하지 않는 자료에 존재하는 구조적 관계성을 보전하는데 이용된다. 자기 조직화 신경망은 벡터 양자화, 조합 최적화, 패턴 인식과 같은 복잡한 문제 해결을 위한 연구에 많이 이용되어 왔다. 이 논문에서는 좀더 효율적인 유전 알고리즘을 얻기 위한 스키마 변환 도구로서 자기 조직화 신경망을 이용하는 새로운 사용법에 대해서 제안한다. 즉, 각 자식해는 탐색 공간에서 좀더 바람직한 모양을 가지는 동질의 인공 신경망으로 변환된다. 이 변환으로 인해 강한 상위(epistasis)를 가지는 유전자들은 염색체 상에서 서로 인접하게 되는 것이다. 실험 결과는 기존 결과에 비해서 주목할만한 성능 개선이 있음을 보여준다.
신경망은 적용 다양성과 제약조건의 최소성, 강력한 예측성, 범용성, 근사성 등 많은 장점을 지니고 있으나 초기 가중치의 할당에 따라 모델 생성의 Performance와 예측의 결과가 달라지게 되는 단점을 지니고 있다. 이런 신경망의 초기 가중치에 따른 단점을 보안하기 위해 통계적 알고리즘의 접목을 통해 Hybrid된 신경망 보완 알고리즘을 제시하고자 하였다. 논문을 위한 기본 가정으로 신경망의 가장 기본인 SLP 알고리즘을 바탕으로 활성함수에 가장 일반적으로 사용되는 Sigmoid 활성함수를 이용하였을 때, 초기 가중치로 기존의 임의 난수 생성 방식이 아닌 통계적 로지스틱 회귀분석의 계수값(mle)을 제시하여 이를 초기치로 사용한 경우와 그렇지 않은 경우의 예측 정확성과 수렴의 Performance정도를 비교하여 가장 효과적인 초기치 방법을 제시하고자 하였다.
본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.
본 논문은 실시간 멀티프로세서 스케줄링 문제를 효과적으로 해결하는 신경망 알고리즘을 제안한다. 제안된 알고리즘은 대표적인 신경망 모델인 홉 필드 네트워크를 근간으로 태스크의 처리요구에 대해 지정된 시간이내에 처리할 수 있는 실시간 시스템을 신경망의 장점인 병렬처리가 가능하도록 구현하였다. 본 알고리즘의 성능을 비교하기 위하여 기존에 실시간 멀티프로세서 스케줄링을 위해 연구되는 EDA와 LLA의 두 알고리즘과 비교한다. 제안된 알고리즘은 VHDL을 이용하여 하드웨어로 설계한다.
본 논문에서는 지진시 구조물의 진동을 줄이기 위한 방법으로 모드에너지 기반 신경망 제어 방법을 제안하였다. 모드에너지 기반 신경망 제어 방법은 신경망의 학습 과정에서 구조물의 모드 에너지를 이용하여 목적함수를 구성하며, 이 목적함수를 최소로 하는 학습을 진행한다. 제안된 제어 알고리즘의 적용성을 검증하기 위해서 능동질량감쇠기(AMD, Active Mass Damper)가 설치된 3층 구조물을 예제 모델로 선택하였으며, El Centrol지진을 이용하여 모드에너지기반 신경망제어 알고리즘을 학습시켰다. 모드에너지 기반 신경망 제어 알고리즘의 제어 성능은 학습 후 임의의 지진에 대한 하중으로 California지진을 사용하여 검증하였다. 해석 결과에서 California지진에 대한 제어 전 후의 결과와 기존의 방법인 MLP(Muli-layer Perceptron)의 결과와 비교하였다. 또한 제안된 제어 방법을 적용할 때, 지진시 구조물의 비선형 거동은 제어후 거의 보이지 않는 것을 확인 할 수 있었다.
본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 데이터의 효율적인 특징추출에 대하여 제안하였다. 제안된 학습알고리즘에서는 모멘트와 동적터널링을 조합하여 이용함으로써 최적해로의 수렴에 따른 발진을 억제하고 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용하여 128$\times$128 픽셀의 얼굴영상과 256$\times$128 픽셀의 자동차번호판 영상을 대상으로 시뮬레이션 한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.
본 논문에서는 F-투영법과 기하학적인 성장기준을 적용하여 모듈화된 웨이블렛 신경망의 최적구조를 설계할 수 있는 성장과 전지 알고리즘을 제안한다. 기하학적인 성장기준은 지역오차를 고려한 예측 오차기준과 기존의 웨이블렛 함수와의 준직교성을 보장하는 웨이블렛 함수를 배치하기 위한 각도기준으로 구성되어 있다. 이러한 성장기준은 모듈화된 웨이블렛 신경망을 설계자 의도에 부합하도록 구성할 수 있는 방법론을 제시한다. 제안한 성장 알고리즘은 모듈화된 웨이블렛 신경망의 모듈과 망의 크기를 증가시킨다. 또한 소거 알고리즘은 모듈화된 웨이블렛 신경망의 모듈로 사용되는 웨이블렛 신경망의 지역화 특성으로 인해 모듈의 크기가 증가하는 문제점을 극복하기 위해 불필요한 모듈의 노드를 제거한다. 제안한 모듈화된 웨이블렛 신경망의 최적구조 설계알고리즘을 1차원과 2차원의 함수 근사화 문제에 적용하여 제안한 알고리즘의 성능을 검증하였다.
본 논문에서는 웨이브릿 분해 알고리즘을 이용한 웨이브릿 신경망의 최적구조의 설계로 기존의 신경회로망에 직교성을 갖는 웨이브릿 함수를 적용하여 뛰어난 성능을 발휘하는 웨이브릿 신경망을 구성하고 구성된 웨이브릿 신경회로망의 크기를 최적화하기 위하여 웨이브릿 분해 알고리즘을 도입하여 최소의 노드를 이용하여 좋은 성능을 발휘하는 웨이브릿 신경회로망을 설계하는 하는 것이다.
본 연구는 도시토지이용의 적합성분석을 실시하는 데 있어 GSIS와 인공신경망의 유기적인 결합을 시도해 보았다. 인공신경망은 학습이라는 과정을 통해 신경망 노드(node)간의 연결강도를 합리적으로 결정할 수 있는 이점이 있다. 이러한 점에서 공간분석에서 요구되는 인자간의 경중률과 신경망의 연결강도는 대체가 가능하리라 판단된다. 본 연구를 수행하기 위해 두 종류의 신경망을 구성하였다. 1차 신경망은 토지이용별 적합성 분석에 적용했으며, 2차 신경망은 최적의 토지이용패턴을 분석하기 위해 구성하였다. 이들 신경망은 C++로 작성된 프로그램에 의해 구현된 최급강하법에 의한 역전파 알고리즘에 의해 학습을 실시하였으며, 활성화 함수는 시그모이드 함수를 사용하였다. 분석결과는 현행 용도지역제에서 주거, 상업, 공업, 녹지에 대한 토지이용 적합도면과 4가지 유형의 토지이용에 대한 대상지역의 최적토지이용패턴을 제시한 도면으로서 Arc/Info의 Grid 형식으로 작성하였다. 또한 토지이용별 적합도면상에 나타난 적합지역과 최적토지이용패턴은 위치적인 면과 공간 구성에 있어 실제의 도시토지이용계획의 이론적인 개념에 매우 합치되는 분포형태를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.