• 제목/요약/키워드: 신경망 알고리즘

검색결과 1,683건 처리시간 0.043초

개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교 (A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm)

  • 윤여창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

유전자 알고리즘 기반 신경망 제어기를 이용한 학습효과 (A Learning Effect Using the Neural Network Controller Based on Genetic Algorithms)

  • 윤여창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.477-480
    • /
    • 2005
  • 본 논문에서는 신경망과 유전자 알고리즘의 장점을 결합하고, 개선된 유전자 알고리즘 기반의 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 살펴 본다. 유전자 알고리즘을 이용한 신경망 학습은 비선형 함수를 이용하여 발생시킨 모의 자료를 통하여 수행하고 학습 수렴의 정도와 학습 속도 등을 비교할 수 있는 모의실험 결과를 일반 신경망 학습 결과와 함께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 신경망 제어기가 일반 신경망 학습 결과보다 수렴 정확도 및 학습 속도에서 더 좋은 결과를 나타내 주고 있다.

  • PDF

블록기반 신경망을 이용한 패턴분류 (Pattern Classification using the Block-based Neural Network)

  • 공성근
    • 한국지능시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.396-403
    • /
    • 1999
  • 본 논문에서는 새로운 블록기반 신경망을 제안하고 블록기반 신경망의 패턴류 성능을 확인하였다. 블록기반 신경망은 4개의 가변 입출력을 가지는 블록을 기본 구성요소로하고 있으며 블록들의 2차원배열 형태로 이루어진다. 블록기반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬수 있는 새로운 신경망 모델이다. 블록 기반 신경망의 구조와 가중치를 재고성 가능 하드웨어(FPGA)의 비트열에 대응시키고 유전자 알고리즘에 의하여 전역최적화를 하여 구조와 가중치를 최적화한다. 유전 알고리즘에 의하여 설계된 블록기반 신경망을 비선형 결정평면을 가지는 여러 학습패턴에 적용하여 패턴분류 성능을 확인하였다.

  • PDF

회귀분석을 위한 로버스트 신경망

  • 황창하;김상민;박희주
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.327-332
    • /
    • 1997
  • 다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.

  • PDF

유전알고리즘을 이용한 신경망 최적화 기법 (Optimizing Neural Network Using Genetic Algorithms)

  • 한승수;송경빈;홍덕헌;최준림
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2830-2832
    • /
    • 1999
  • 신경망은 선형 시스템 뿐 만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.

  • PDF

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

신경망을 이용한 하이브리드 학습 제어 알고리즘의 연구

  • 고영철;왕지남
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.71-74
    • /
    • 1996
  • 본 연구에서는 반복 학습제어 이론을 기초로 하는 하이브리드 신경망 제어기를 제안한다. 신경망으로는 백프로퍼게이션(backpropagation) 신경망을 사용하고, 기존의 반복 학습 제어 이론의 단점을 보안한 제어 알고리즘을 제안한다. 백프로퍼게이션 신경망의 맵핑(mapping)의 특징으로 원하는 목표 패턴에 추종할 수 있는 출력 패턴을 생성하고 반복 학습에 소요되는 학습시간을 줄일 수 있다. 실험결과에서 보듯이 제안된 제어 알고리즘은 목표패턴에 수렴함을 알 수 있다. 제시한 알고리즘은 CD-ROM 드라이브와 같은 광디스크 드라이브류의 초점 제어 등에 응용할 수 있다.

  • PDF

비선형 주요성분 분석을 위한 신경망의 효율적인 학습알고리즘 (A Efficient Learning Algorithm of Neutral Networks for Nonlinear PCA)

  • 조용현;윤중환;박창환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 춘계학술발표논문집
    • /
    • pp.353-356
    • /
    • 2000
  • 본 논문에서는 데이터 내의 비선형 속성을 보다 빠르고 정확하게 추출하기 위한 수정된 학습알고리즘의 비선형 주요 성분분석 신경망을 제안한다. 제안된 학습알고리즘은 신경망의 학습시에 과거의 속성을 반영하기 위한 모멘트 항이 추가된 학습기법이다. 이는 최적해로의 수렴에 따른 발전을 억제하여 그 수렴성능을 좀더 개선시키는 모멘텀의 장점을 그대로 살리기 위함이다. 제안된 학습알고리즘을 이용한 신경망을 128$\times$128 픽셀의 Lenna와 256$\times$128 픽셀의 차량 번호판 영상들을 대상으로 시뮬레이션 한 결과, 제안된 학습알고리즘이 기존의 비선형 주요성분 분석을 위한 신경망이나 선형속성을 가지는 역전파 알고리즘을 이용한 신경망보다 더욱 우수한 수렴 성능과 특징추출 성능이 있음을 확인하였다.

  • PDF

FPGA를 이용한 진화형 하드웨어 설계 및 구현에 관한 연구 (A Study on Design of Evolving Hardware using Field Programmable Gate Array)

  • 반창봉;곽상영;이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.426-432
    • /
    • 2001
  • 본 논문은 진화형 하드웨어를 이용하여 생물의 정보처리 시스템인 셀룰라 오토마타 신경망의 구현에 관한 연구이다. 셀룰라 오토마타 신경망은 진화 및 발생을 기반으로 한 신경망 모델이다. 진화는 다양성을 주요 근원을 제공하는 돌연변이 및 재 조합 비율에 의하여 비결정론이며, 발생은 결정론 적이며 지역적인 무리현상을 따른다. 셀룰라 오토마타 신경망은 셀룰라 오토마타에 의해 신경망 내부의 각 셀의 상태를 발생시키고, 초기 셀을 유전자 알고리즘의 개체로 간주하여 초기 셀이 진화 알고리즘을 통해 진화함으로써 신경망이 진화하는 시스템이다. 본 논문은 이 시스템을 진화형 하드웨어 이용하여 하드웨어로 구현하였다. 진화형 하드웨어는 진화 알고리즘과 재구성하드웨어의 결합체이다. 즉, 재구성 하드웨어의 구성에 필요한 bit를 유전자 알고리즘의 개체로 간주한 것이다. 진화 알고리즘을 수행하기 위해 유전자 알고리즘 프로세서를 설계하였으며, 셀룰라 오토마타 신경망이 유전자 알고리즘의 개체와 셀룰라 오토마타 룰에 의해 자동적으로 신경망을 생성하기 위해 신경망을 이루는 셀들로 설계하였다. 제안된 시스템의 효율성을 검증하기 위해 Exclusive-OR 문제에 적용하였다.

  • PDF

장단기 기억 신경망과 공간적 순환 신경망을 이용한 배경차분 (Background subtraction using LSTM and spatial recurrent neural network)

  • 추성권;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.13-16
    • /
    • 2016
  • 본 논문에서는 순환 신경망을 이용하여 동영상에서의 배경과 전경을 구분하는 알고리즘을 제안한다. 순환 신경망은 일련의 순차적인 입력에 대해서 내부의 루프(loop)를 통해 이전 입력에 의한 정보를 지속할 수 있도록 구성되는 신경망을 말한다. 순환 신경망의 여러 구조들 가운데, 우리는 장기적인 관계에도 반응할 수 있도록 장단기 기억 신경망(Long short-term memory networks, LSTM)을 사용했다. 그리고 동영상에서의 시간적인 연결 뿐 아니라 공간적인 연관성도 배경과 전경을 판단하는 것에 영향을 미치기 때문에, 공간적 순환 신경망을 적용하여 내부 신경망(hidden layer)들의 정보가 공간적으로 전달될 수 있도록 신경망을 구성하였다. 제안하는 알고리즘은 기본적인 배경차분 동영상에 대해 기존 알고리즘들과 비교할만한 결과를 보인다.

  • PDF