• 제목/요약/키워드: 신경망 기계 번역

검색결과 44건 처리시간 0.022초

단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역 (Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment)

  • 정영준;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

직교 정규화를 이용한 신경망 기계 번역에서의 커버리지 모델링 (Coverage Modeling in Neural Machine Translation using Orthogonal Regularization)

  • 이요한;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.561-566
    • /
    • 2018
  • 최근 신경망 번역 모델에 주의 집중 네트워크가 제안되어 기존의 기계 번역 모델인 규칙 기반 번역 모델, 통계적 번역 모델에 비해 높은 번역 성능을 보이고 있다. 그러나 주의 집중 네트워크가 잘못 모델링되는 경우 과소 번역 현상이 나타난다. 신경망 번역 모델에 커버리지 메커니즘을 추가하여 과소 번역 현상을 완화하는 연구가 진행되었으나 이는 모델의 구조를 변경해야하는 불편함이 있다. 본 논문에서는 신경망 번역 모델의 구조를 변경하지 않고 새로운 손실 함수를 정의하여 과소 번역 현상을 완화하는 방법을 제안한다. 한-영 번역 실험을 통해 제안한 주의 집중 네트워크의 정규화 방법이 커버리지 메커니즘의 목적을 효율적으로 달성함을 보인다.

  • PDF

한-영 관용구 기계번역을 위한 NMT 학습 방법 (NMT Training Method for Korean-English Idiom Machine Translation)

  • 최민주;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.353-356
    • /
    • 2020
  • 관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.

  • PDF

MASS를 이용한 영어-한국어 신경망 기계 번역 (English-Korean Neural Machine Translation using MASS)

  • 정영준;박천음;이창기;김준석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.236-238
    • /
    • 2019
  • 신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.

  • PDF

사전 정보를 활용한 신경망 기계 번역 (Neural Machine Translation with Dictionary Information)

  • 전현규;김지윤;최승호;김봉수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.86-90
    • /
    • 2023
  • 최근 생성형 언어 모델이 주목받고 있으며, 이와 관련된 과제 또한 주목받고 있다. 언어 생성과 관련하여 많은 연구가 진행된 분야 중 하나가 '번역'이다. 번역과 관련하여, 최근 인공신경망 기반의 신경망 기계 번역(NMT)가 주로 연구되고 있으며, 뛰어난 성능을 보여주고 있다. 하지만 교착어인 한국어에서 언어유형학 상의 다른 분류에 속한 언어로 번역은 매끄럽게 번역되지 않는다는 한계가 여전하다. 따라서, 본 논문에서는 이러한 문제점을 극복하기 위해 한-영 사전을 통한 번역 품질 향상 방법을 제안한다. 또한 출력과 관련하여 소형 언어모델(sLLM)을 통해 CoT데이터셋을 구축하고 이를 기반으로 조정 학습하여 성능을 평가할 것이다.

  • PDF

기계번역과 인간번역의 혼합적 접근법 (The Blended Approach of Machine Translation and Human Translation)

  • 김양순
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.239-244
    • /
    • 2022
  • 인공신경망기계번역은 점진적으로 인간번역과 기계번역의 경계를 허물어가고 있다. 기계번역의 현재와 미래 그리고 기계번역의 장·단점을 논의하는 가운데 인간번역과 기계번역의 실제 번역사례들을 살펴보고 최근 수년간 놀라운 발전을 이룬 인공신경망기계번역이 왜 인간번역의 손길을 필요로 하는지를 논의하는 것이 본 연구의 목표이다. 번역분야에서 인간이 기계로 대치될 수 있는가? 인공신경망기계번역 시대에 인간번역가는 도태되어야 하는가? 그리고 인공신경망기계번역과 지역의 세계화에 기반을 두고 확장하고 있는 세계영어들이라는 언어다양성 시대에 언어장벽을 없애는 것이 가능한가라는 질문 모두에 대하여 부정적인 결론과 함께 기계번역은 신속성, 정확성, 저비용의 생산성이라는 장점을 갖는 유용한 도구임에도 불구하고, 문화, 차용어, 중의성, (국가)방언, 신조어 등의 분야에서는 인간번역이 요구된다고 제안한다. 기계학습을 기반으로 하는 기계번역과 직관과 습득을 기반으로 하는 인간번역은 협업의 상태로 공생 발전해야할 것이다. 기계번역은 역 번역과 인간의 사후편집과 같은 방법을 활용할 때 도덕적 문제를 야기하지 않는 유용한 번역도구가 될 것이다. 결론적으로 기계번역은 인간번역의 손길 없이는 완성될 수 없다는 혼합적 접근법을 제안한다.

신경망 기반 기계 번역을 위한 역-번역을 이용한 한영 병렬 코퍼스 확장 (Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation)

  • 허광호;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.470-473
    • /
    • 2018
  • 최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.

  • PDF

인공신경망 기계번역에서 디코딩 전략에 대한 연구 (Study on Decoding Strategies in Neural Machine Translation)

  • 서재형;박찬준;어수경;문현석;임희석
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.69-80
    • /
    • 2021
  • 딥러닝 모델을 활용한 인공신경망 기계번역 (Neural machine translation)이 주류 분야로 떠오르면서 최고의 성능을 위해 모델과 데이터 언어 쌍에 대한 많은 투자와 연구가 활발하게 진행되고 있다. 그러나, 최근 대부분의 인공신경망 기계번역 연구들은 번역 문장의 품질을 극대화하는 자연어 생성을 위한 디코딩 전략 (Decoding strategy)에 대해서는 미래 연구 과제로 남겨둔 채 다양한 실험과 구체적인 분석이 부족한 상황이다. 기계번역에서 디코딩 전략은 번역 문장을 생성하는 과정에서 탐색 경로를 최적화 하고, 모델 변경 및 데이터 확장 없이도 성능 개선이 가능하다. 본 논문은 시퀀스 투 시퀀스 (Sequence to Sequence) 모델을 활용한 신경망 기반의 기계번역에서 고전적인 그리디 디코딩 (Greedy decoding)부터 최신의 방법론인 Dynamic Beam Allocation (DBA)까지 비교 분석하여 디코딩 전략의 효과와 그 의의를 밝힌다.

전문번역사들의 기계번역 수용에 관한 연구 (Study on Translators' Acceptance of Machine Translation)

  • 천종성
    • 한국융합학회논문지
    • /
    • 제11권6호
    • /
    • pp.281-288
    • /
    • 2020
  • 본 연구는 구글 번역과 파파고와 같은 신경망 기계번역(NMT)에 대한 수용성을 탐구한다. 기계번역의 도입으로 훈련받은 번역사들이 위협을 느끼리라는 것과 기계와의 협력을 모색해야 한다는 논의가 상충하고 있는 시점에서, 오랫동안 기술수용을 예측해 온 TAM을 적용하여 전문번역사들의 기계번역 수용에 관한 의사결정 과정을 살펴보았다. 결론적으로 번역사들이 기계번역에 대해 위협을 느낄 것이라는 기존의 규범적 논의와 달리 본 연구의 경험적 결과는 번역사들이 자신의 업무의 효율을 높여주는 유용한 도구로 인식하고 있음이 밝혀졌다. 특히 같이 작업하는 동료들의 조언과 사회적 분위기가 우호적일 경우 이러한 경향은 더욱 강해졌다.

공공 한영 병렬 말뭉치를 이용한 기계번역 성능 향상 연구 (A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus)

  • 박찬준;임희석
    • 디지털융복합연구
    • /
    • 제18권6호
    • /
    • pp.271-277
    • /
    • 2020
  • 기계번역이란 소스언어를 목적언어로 컴퓨터가 번역하는 소프트웨어를 의미하며 규칙기반, 통계기반 기계번역을 거쳐 최근에는 인공신경망 기반 기계번역에 대한 연구가 활발히 이루어지고 있다. 인공신경망 기계번역에서 중요한 요소 중 하나로 고품질의 병렬 말뭉치를 뽑을 수 있는데 이제까지 한국어 관련 언어쌍의 고품질 병렬 코퍼스를 구하기 쉽지 않은 실정이었다. 최근 한국정보화진흥원의 AI HUB에서 고품질의 160만 문장의 한-영 기계번역 병렬 말뭉치를 공개하였다. 이에 본 논문은 AI HUB에서 공개한 데이터 및 현재까지 가장 많이 쓰인 한-영 병렬 데이터인 OpenSubtitles와 성능 비교를 통해 각각의 데이터의 품질을 검증하고자 한다. 테스트 데이터로 한-영 기계번역 관련 공식 테스트셋인 IWSLT에서 공개한 테스트셋을 이용하여 보다 객관성을 확보하였다. 실험결과 동일한 테스트셋으로 실험한 기존의 한-영 기계번역 관련 논문들보다 좋은 성능을 보임을 알 수 있었으며 이를 통해 고품질 데이터의 중요성을 알 수 있었다.