• Title/Summary/Keyword: 신경망알고리즘

검색결과 1,685건 처리시간 0.027초

한글 단어를 발음 기호로 변환 시키는 인공신경망에 관한 연구

  • 양재우;김두현
    • ETRI Journal
    • /
    • 제10권3호
    • /
    • pp.113-124
    • /
    • 1988
  • 본 논문에서는 한글 단어를 발음 기호로 변환시키는 인공신경망의 설계와 이를 시뮬레이션한 결과에 대하여 논한다. 이 인공신경망은 multi-layer perceptron 구조를 가지며 error back-propagation 학습 알고리즘을 사용하였다. 이 인공신경망에 한글 발음 사전의 일부를 반복적으로 제시하여 학습시킨 결과, 학습한 단어에 대하여 최고 97%의 정확도로 변환 작업을 수행하였고 학습하지 않은 단어에 대해서는 91%의 정확도를 보였다. 이는 설계된 인공신경망이 발음 사전 내에 포괄적으로 내재되어 있는 발음규칙을 스스로 학습하였음을 나타낸다. 아울러 신경망의 학습 성취도와 입력 코드와의 관계도 연구하였는데, 한글단어를 발음기호로 변환하는 데에 있어서 compact 코드 보다 local 코드일 때 학습 성취도가 높은 것이 실험을 통해 밝혀졌다.

  • PDF

웨이브릿 이론을 이용한 퍼지-신경망 구조의 최적화 (The FNN Optimization Using The Wavelet Theory)

  • 김용택;서재용;연정흠;김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.591-596
    • /
    • 2000
  • 본 논문에서는, 퍼지 신경망 시스템에 대한 최적의 규칙 베이스의 생성과 초기화를 이루기 위하여 웨이브릿 이론을 기반으로 한 퍼지 신경망 구조를 제안한다. 제안한 웨이브릿 기반의 퍼지 신경망 구조(WFNN)에서는 퍼지-신경망에 대하여 웨이브렛 함수의 성질과 다운스트레칭 메카니즘에 의하여 초기의 최적 퍼지 규칙 베이스를 구성하고 은닉층의 노드 개수를 최적화시키며, 에러 역전파 알고리즘에 의하여 각 파라미터의 조절과 학습이 진행된다. 역진자 시스템에 대한 모의 실험을 통하여 제안한 웨이브릿 기반의 퍼지 신경망 제어 시스템의 우수성을 검증하였다.

  • PDF

FPGA에 의한 블록기반 신경망의 설계 (Hardware Design of Block-based Neural Networks Using FPGA)

  • 장정두;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2998-3000
    • /
    • 2000
  • 본 논문에서는 BNN, 블록기반 신경망 모델을 재구성가능 하드웨어(FPGA)로 설계한다. 블록기 반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬 수 있다. 블록기반 신경망의 구조와 가중치를 표현하는 바이너리 스트링을 오프라인으로 진화시킨 후, 재구성가능 하드웨어로 구현한다. FPGA로 구현된 블록기반 신경망의 성능을 확인하기 위하여 간단한 성능시험에 사용되는 대표적인 패턴들을 사용하여 블록기반 신경망의 패턴분류 성능을 알아본다.

  • PDF

신경망을 이용한 무선망에서의 채널 관리 기법 (A Channel Management Technique using Neural Networks in Wireless Networks)

  • 노철우;김경민;이광의
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1032-1037
    • /
    • 2006
  • 채널은 무선망에 있어서 한정된 주요 자원 중의 하나이다. 다양한 채널 관리 기법들이 제시되어 왔으며, 최근 들어 가드채널의 최적화 문제가 부각되고 있다. 본 논문에서는 신경망을 이용한 지능적인 채널 관리 기법을 제안한다. 신경망의 학습 데이터 생성과 성능분석을 위하여 SRN(Stochastic Reward Net) 채널 할당 모델이 개발된다. 제안된 기법에서 신경망은 지도학습 방법인 역전파 알고리즘을 이용하여 최적의 가드채널 값 g를 계산하도록 학습한다. 학습된 신경망을 이용하여 최적의 g를 계산하고, 이를 SRM모델에서 구해진 결과와 비교한다. 실험 결과는 신경망에서 구한 가드채널 수와 SRM모델로부터 구한 가드채널 수의 상대적 차이가 없음을 보여준다.

DS/SS 통신에서 BISP 알고리즘을 이용한 탭 가중치 갱신 (Tap-Weight Update Multilayer Neural Network using BISP Algorithm in DS/SS Communication)

  • 석경휴;김문환;임영진;김광준;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • 본 논문은 신경망을 이용한 간섭 신호 제어로써 복합 다중 퍼셉트론에서 DS/SS 이동 통신에서의 수신된 신호들을 역전파 학습알고리즘을 이용하여 검출하는 것에 대하여 연구한다. 수신 신호가 일정한 비트율을 갖는 채널에 전송하기 위하여 신경망을 이용한 새로운 탭 가중치 갱신 제어 방법을 제안한다. 적응 횡단선 필터는 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS 알고리즘에 다계층 퍼셉트론 신경망을 조합한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

인공신경망을 이용한 강우예측기법에 관한 연구 (Study on Precipitation Prediction Technique using Artificial Neural Network)

  • 여운기;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구 (Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network)

  • 박준철;노태성;최동환;이창호
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.102-109
    • /
    • 2006
  • 본 논문에서 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하기 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. 신경망을 이용한 시스템은 비선형성이 과도한 데이터를 학습할 때 지역 최소점(Local Minima)에 빠져 분류 정확률이 낮아질 수 있다. 이러한 위험성을 보안하기 위해 SVM에 의한 ANN의 분할 학습 알고리즘(SLA)을 제안하였다. 이것은 SVM을 이용하여 결함 위치를 판별 한 후 신경망이 선택적으로 학습을 하는 방법으로 학습 데이터의 비선형성을 줄여 분류 정확률을 높이기 때문에 신경망을 단독으로 사용할 때보다 개선된 성능을 보여주었다.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

잔류 합성 곱 신경망 기반의 코골이 식별 방식 (Snoring identification method based on residual convolutional neural network)

  • 신승수;김형국
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.574-579
    • /
    • 2019
  • 코골이는 전형적인 수면장애 증상이며 수면 무호흡증을 유발하기 때문에 코골이의 발생을 확인하는 것이 중요하다. 이에 본 논문에서는 효율적인 코골이 식별 알고리즘으로 잔류 합성 곱 신경망을 제안한다. 잔류 학습과 합성곱 신경망을 결합한 구조인 잔류 합성 곱 신경망은 기존의 신경망보다 데이터에 존재하는 특징을 효과적으로 추출하여 코골이 식별 정확도를 향상한다. 실험 결과는 제안한 코골이 식별 알고리즘의 성능이 기존 방식보다 더 우수하다는 것을 보여준다.

퍼지 ART 신경망을 이용한 내용기반 영상검색 (Contents-based Image Retrieval using Fuzzy ART Neural Network)

  • 박상성;이만희;장동식;김재연
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2003
  • 본 논문은 퍼지 ART 신경망 알고리즘을 이용하여 내용기반 영상을 검색하는 연구를 제시한다. 대용량의 영상 데이터베이스를 검색할 때, 클러스터링은 빠른 검색을 위해 중요하다. 그러나 많은 양의 영상 데이터를 적절하게 클러스터링 하는 것은 상당히 어렵다. 기존의 유사도에 따른 검색 방법은 검색의 정확도가 떨어지고 검색시간이 많이 걸리는 단점이 있기 때문에 이러한 단점을 보완하는 방법이 필요하다. 본 논문에서는 앞서 언급한 문제점을 보완하기 위하여 신경망 알고리즘을 사용한 내용기반 영상검색 시스템을 제안한다. 퍼지 ART 신경망 알고리즘을 사용한 본 검색 시스템에서는 색상과 질감을 검색에 필요한 특징치로 잡아 데이터를 0과 1사이의 데이터로 정규화 하여 신경망 알고리즘의 입력 데이터로 넣어서 영상을 클러스터링 한 후 검색을 실시하였다 300개의 영상을 가지고 실험한 결과 약 87%의 검출률을 보여 주었다.

  • PDF