• Title/Summary/Keyword: 신경망알고리즘

검색결과 1,685건 처리시간 0.029초

공간데이터마이닝에서의 유전자알고리즘을 이용한 예측방법연구

  • 김효정;강한구;강창완
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.95-97
    • /
    • 2001
  • 공간자료의 예측문제에 있어 전통적 예측방법인 크리깅방법과 최근 통계적문제 적용되기 시작한 신경망분석방법 간의 비교를 사례연구를 통해 행하였다. 일반적으로 크리깅에 의한 선형예측은 공간자료에 대한 일반적 통계모형으로서 간주되어 왔다. 한편 예측문제에 있어 뉴럴네트워크에 기초한 비모수적 방법이 관심의 대상이 되고 있으며 특히 대용량 자료의 경우 데이터마이닝 기법의 한 분야로 널리 사용되고 있는 실정이다. 본 연구에서는 공간 자료의 예측에 있어 유전자 알고리즘을 신경망분석 모형을 결합하여 기존의 크리깅방법과의 예측력을 비교한다.

  • PDF

신경망필터를 이용한 음질향상 (Speech Enhancement using the Neural Network Filter)

  • 김종우;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(II) -학습 시뮬레이션 및 응용- (On Learning and Structure of Cerebellum Model Linear Associator Network(II) -Learing Simulation & Engineering Application-)

  • 황헌;백풍기
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.199-206
    • /
    • 1990
  • 연구 I에서 수행한 소뇌모델 선형조합 신경망(CMLAN)의 분석 결과와 제안된 능률적 학습 알고리즘들에 의거하여 이차원 비선형 함수치의 출력 모의시험과 팔의 형태에 따라 두개의 목적치를 갖는 2 자유도 머니퓨레이터의 동작지령 산출 모의시험을 행하였다. 특히 2 자유도 머니퓨레이터의 경우, 작업공간에 적절한 입력네트의 변수를 선정하고 하나의 입력공간을 공유하는 두개의 세부 소뇌모델 선형조합 신경망을 서로 연결하는 구조로써 팔의 형태와 목적 지점에 따라 네트를 선정하는 구조를 갖도록 하였다. 제안한 학습 알고리즘의 성능 및 CMLAN의 학습에 따른 효과를 학습이득에 따라 컴퓨터로 모의시험하였으며 그 결과를 분석하였다. 잘 알려진 신경망인 BACK-PROPAGATION 다층(Multi-Layer) 신경망과 함수연결 신경망(Functional Link Net)을 이용한 모의시험 결과를 비교 분석하였다. CMLAN의 학습 능률성은 학습에 소요되는 컴퓨터의 cpu시간과 학습 중의시스템의 최대 편차와 RMS 편차의 변이도 및 최종 시스템 수렴치로서 나타내었다.

  • PDF

모듈라 신경망에 기반한 번호판 인식시스템의 특징벡터 클러스터링 방법에 따른 성능평가 (Performance Evaluation of Clustering Methods of Feature Vectors in Vehicle Plate Recognition Systems based on Modular Neural Network)

  • 박창석;김병만;서병훈;이광호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.313-315
    • /
    • 2003
  • 분할 및 합병 개념에 바탕을 둔 모듈라 신경망이 자동차 번호판 문자 인식에서 단일 신경망 사용 보다 학습 질 측면이나 학습 속도 면에서 좋은 결과를 보였다. 본 논문에서는 번호판 인식을 위한 모듈라 신경망 구성 시, 특징 벡터 클러스터링 방법에 따른 모듈라 신경망의 성능을 평가하였다. K-means Clustering 알고리즘을 이용하여 유사한 특징 벡터를 그룹핑하는 방법과 본 논문에서 제안한 알고리즘을 사용하여 유사하지 않는 특징 벡터들을 그룹핑하는 방법 각각을 구현하여 실험하였다. 실험결과, 유사하지 않는 특징 벡터들로 모듈라 신경망을 구성할 경우가 그렇지 않은 경우보다 좋은 인식 결과를 보였다.

  • PDF

라플라시안 필터와 신경망을 이용한 얼굴인식 알고리즘 (Face Recognition Algorithm using Laplacian Filter and Neural Network)

  • 이희열;이승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.708-711
    • /
    • 2016
  • 일반적인 얼굴인식 시스템에서는 얼굴표현과 얼굴분류 과정을 통하여 얼굴인식을 수행한다. 얼굴표현 방법으로는 LBP(Local Binary Pattern) 방법이 많이 사용되고 있다. 얼굴분류 방법으로는 신경망을 이용하여 미리 학습을 시켜놓기 때문에 수행시간이 매우 짧은 신경망 방법이 많이 사용되고 있다. 이때 얼굴표현 과정에서 LBP를 사용한 후 신경망을 사용하여 얼굴분류를 수행하면 인식률이 낮고 학습시간이 오래 걸리는 문제점이 있다. 따라서 본 논문에서는 신경망을 이용하여 얼굴 인식 과정을 수행하기 적합한 얼굴 표현 과정인 라플라시안 필터를 이용한 알고리즘을 제안한다. LBP와 신경망을 이용한 얼굴인식 과정과 본 논문에서 제안한 얼굴인식 과정을 비교분석한 실험결과, 본 논문에서 제안한 방법이 학습에 걸리는 시간과 인식률이 우수함을 보였다.

ReLU 함수의 예측을 통한 인공 신경망 추론 연산 최적화 (Optimization of Artificial Neural Network Inference by ReLU Function Prediction)

  • 박상우;김한이;서태원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.699-701
    • /
    • 2018
  • 본 연구는 인공 신경망 '추론'과정에서 연산량을 줄이는 아이디어를 고안했고, 이를 구현하여 기존 알고리즘과 성능을 비교 분석하였다. 특정 데이터 셋에 대한 실험을 통해 ReLU(Rectified Linear Unit) 함수의 결과를 분석했고, 그 결과를 통해 ReLU 함수의 결과가 예측가능함을 확인했다. 또한 인공 신경망 알고리즘에 ReLU 함수의 결과 예측 기법을 적용하여 인공 신경망 추론과정을 최적화했다. 이 아이디어를 기반으로 구현된 인공 신경망은 기존 아이디어로 구현된 인공 신경망에 비해 약 3배 빠른 성능을 보였다.

유전자 알고리즘과 신경 회로망의 결합에 관한 연구 조사 (A Survey on Combination of Genetic Algorithms and Neural Networks)

  • 송윤선;김명원;김종문
    • 전자통신동향분석
    • /
    • 제9권4호
    • /
    • pp.53-61
    • /
    • 1994
  • 최근 생물학에 기반을 두고 최적화 문제와 학습 문제에 많이 사용되고 있는 유전자 알고리즘과 신경 회로망 기술을 결합하는 연구가 활발해 지고 있다. 신경 회로망 연구에 비해 조금 늦게 시작된 유전자 알고리즘에 대한 연구는 유전자 복제, 교차, 돌연 변이 등의 현상을 걸쳐서 새로운 개체를 발생시켜 나가는 진화의 과정에서 착안하여 해결하고자 하는 문제의 해답을 유전자 탐색의 과정을 통하여 찾아내는 것이다. 이 글에서는 유전자 알고리즘과 신경 회로망을 혹은 서로 보조적인 입장에서 혹은 동등한 입장에서 결합하는 연구에 대한 조사를 소개함으로써 보다 복잡한 최적화 문제나 자동 프로그래밍, 기계 학습, 복잡한 자료 분석, 시계열 예측 등의 분야에 응용하는데 도움을 주고자 한다.

신경망과 수치 해석 알고리즘의 비교 연구 (Comparative Study on the Neural Networks versus Numerical Analysis Algorithm)

  • 이승창;박승권
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.265-272
    • /
    • 1997
  • 본 논문은 신경망 근사 해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 기존의 수치해석 알고리즘과의 성능 비교를 통하여 신경망 알고리즘의 특성과 역할을 수치해석의 관점에서 정확히 판단하는데 목적이 있다. 신경망 알고리즘을 변형하여 선형 연립 방정식의 해를 구하는 두가지 방법을 제안하였고, 회귀분석, 보간법과의 비교를 통하여 광범위한 근사자(universal approximator)로서의 역할을 보였다.

  • PDF

개선된 에너지 함수를 가지는 신경망 기반의 라우팅 알고리즘 (A Neural Network-based Routing Algorithm With an Improved Energy Function)

  • 박동철;금교린
    • 한국통신학회논문지
    • /
    • 제30권2B호
    • /
    • pp.21-26
    • /
    • 2005
  • 효율적인 통신망에서의 라우팅을 위해, 개선된 에너지 함수를 가지는 Hopfield 신경망에 의한 알고리즘이 본 논문에서 제안되었는데, 보다 높은 최적경로 형성과 안정적 수렴의 결과를 목적으로 한다. 20-50 개의 노드를 가지며, 무작위 연결 비용이 인가되는 3,000 개의 통신망에 대한 실험의 결과에서 볼 때, 기존의 신경망을 이용한 알고리즘들이 노드 수가 많은 망 환경에서 수렴하지 않거나, 최적경로가 형성이 되지 않은 경우가 많았지만 제안된 알고리즘은 최적경로 형성에서 기존 알고리즘 보다 약 65%의 개선을 하였고 또한 기존 알고리즘 보다 약 50% 정도 수렴이 잘 되는 것이 확인되었다.

신경망기법을 이용한 위성영상(ETM+)에서 산불피해지역 추출

  • 임정호;원강연;사공호상
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.70-70
    • /
    • 2001
  • 인공위성영상(ETM+)을 이용하여 산불피해지역을 추출하기 위해 신경망기법을 응용하였다. 적용된 신경망은 3개의 층으로 구성된 전향신경망이며 Levenberg-Marquardt 역전파 훈련 알고리즘을 사용하였다. 산불피해지역은 심, 중, 경 세 가지로 나누었으며, 그외 피해없는 산림지역과 기타(나지, 도시 등)지역으로 분류하였다.

  • PDF