• Title/Summary/Keyword: 신경망분류기

Search Result 326, Processing Time 0.036 seconds

Illegal Dumping Detector using Image Subtraction and Convolutional Neural Networks (차 영상과 합성곱 신경망을 이용한 쓰레기 무단투기 검출기)

  • Ryu, Dong-Gyun;Lee, Jae-Heung
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.736-738
    • /
    • 2018
  • 최근 딥러닝의 발전에 따라 무인감시, CCTV 등 영상감시 시스템도 지능화되고 있다. 하지만 쓰레기 무단투기 감시는 여전히 관리자가 실시간으로 CCTV 영상을 관제하는 형태로 이루어지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 CCTV 영상에서 쓰레기 무단투기를 검출하는 방법을 제안하며 검출 방법으로 차 영상과 합성곱 신경망을 이용한다. 실험은 합성곱 신경망에서의 쓰레기봉투 분류 문제 위주로 진행하였다. 합성곱 신경망의 네트워크는 Inception v3를 사용하였으며 실험 결과, 약 99.52%의 쓰레기봉투 분류율을 얻을 수 있었다.

Efficient Iris Recognition using Deep-Learning Convolution Neural Network (딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식)

  • Choi, Gwang-Mi;Jeong, Yu-Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.521-526
    • /
    • 2020
  • This paper presents an improved HOLP neural network that adds 25 average values to a typical HOLP neural network using 25 feature vector values as input values by applying high-order local autocorrelation function, which is excellent for extracting immutable feature values of iris images. Compared with deep learning structures with different types, we compared the recognition rate of iris recognition using Back-Propagation neural network, which shows excellent performance in voice and image field, and synthetic product neural network that integrates feature extractor and classifier.

MPEG-4 Video Rate Control Algorithm using SOFM-Based Neural Classifier (SOFM 신경망 분류기를 이용한 MPEG-4 비디오 전송률 제어)

  • Park, Gwang-Hoon;Lee, Yoon-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.425-435
    • /
    • 2002
  • This paper introduces a macroblock-based rate control algorithm using the neural classifier based in Self Organization feature Maps (SOFM). In contrast to the conventional rate control methods based on the mathematical rate distortion (RD) model and the feedback regression, proposed method can actively adapt to the rapid-varying image characteristics by establishing the global model for bitrate control and by using the SOFM based neural classifier to manage that model. Proposed rate control algorithm has 0.2 dB ~ 0.6 dB better performances than MPEG-4 macroblock-based rate control algorithm by evaluating with the encoded Peak Signal to Noise Ratios while maintaining similar overall computational complexity.

A Priori and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.

Digital Video Record System for Classification of Car Accident Sounds in the Parking Lot. (주차장 차량사고 음향분류 DVR시스템)

  • Yoon, Jae-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.429-432
    • /
    • 2010
  • 주차장에서는 다양한 형태의 사건 사고가 발생하는데, 기존 DVR(CCTV)는 단순 영상녹화 기능만 지원하므로, 이를 효과적으로 분석하는데는 한계가 있다. 따라서, DVR의 영상카메라와 마이크를 통해서 입력되는 영상과 사운드 신호를 대상으로, 해당 영상이 발생하는 음향 신호의 종류를 파악하여, 특정 음향이 발생한 영상구간을 저장하여 이를 검색할 수 있다면, 주차장 관리자가 효과적으로 사건 사고를 대처할 수 있게 된다. 본 연구에서는 주차장에서 발생하는 차량관련 음향(충돌음, 과속음, 경적음, 유리파손, 비명)을 분류하기 위해 효과적인 특징벡터를 제안하고, 제안한 특징벡터를 이용하여 신경망 차량음향분류기를 설계하여 성능을 평가함으로써, 효과적으로 차량음향을 분류하기 위한 방법을 제안하였다. 또한, 신경망 차량음향분류기를 DVR시스템과 연동하여, 마이크로부터 입력되는 음향신호를 실시간 분석하고, 특정 소리가 발생한 영상구간을 기록함으로써, 음향 키워드에 의해서 해당 사고영상을 검색 및 디스플레이하는 시스템을 개발하였다.

  • PDF

Sign Language Recognition using a Modified Fuzzy Min-Max Neural Network Model (수정된 퍼지 최대-최소 신경망 모델을 이용한 수화 인식 기법)

  • Park, So-Jeong;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 수화인식을 위한 신경망에서 특징추출과 분류단계의 방법론과, 특징 선별 기법을 통하여 분류기의 규모를 최적화 하는 방법을 고찰한다. 색상 및 움직임정보로부터 특징영역의 시간에 따른 변화를 3 차원 볼륨형태의 데이터로 표현하며, 이로부터 특징지도를 생성하는 과정에서 특징영역의 위치에 대한 변이를 보완하는 방법을 고려한다. 특징추출과정과 패턴 분류과정에서 점진적 학습이 가능한 모델과 특징 수를 효과적으로 줄일 수 있는 방법론을 제시하였으며, 학습된 신경망으로부터 특징과 패턴 클래스간의 상대적 연관성 척도를 정의하여 특징을 선별하도록 하였다. 제안된 내용에 대하여 여섯 가지 수화패턴에 대상으로 한 실험을 통하여 그 유용성을 평가하였다.

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

Extreme Learning Machine based Fuzzy Pattern Classifier for Face Recognition (얼굴인식을 위한 ELM 기반 퍼지 패턴분류기)

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1369-1370
    • /
    • 2015
  • 본 논문에서는 얼굴 인식을 위하여 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 지능형 알고리즘인 퍼지 집합 이론을 이용하여 주변 노이즈에 매우 강한 특성을 보이며 학습 속도가 매우 빠른 새로운 패턴 분류기를 제안한다. 제안된 퍼지 패턴 분류기는 기존 신경회로망의 학습 속도에 비해 매우 빠른 학습 속도를 보이며, 패턴 분류기의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 특성을 퍼지 집합 이론과 결합하여 퍼지 패턴 분류기의 일반화 성능을 개선하였다. 제안된 퍼지 패턴 분류기는 얼굴 인식 데이터를 이용하여 성능을 평가 하였다.

  • PDF

Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM (합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Arrhythmia is a condition in which the heart beats abnormally or irregularly, early detection is very important because it can cause dangerous situations such as fainting or sudden cardiac death. However, performance degradation occurs due to personalized differences in ECG signals. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-LSTM. For this purpose, the R wave is detected from noise removed signal and a single bit segment was extracted. It consisted of eight convolutional layers to extract the features of the arrhythmia in detail, used them as the input of the LSTM. The weights were learned through deep learning and the model was evaluated by the verification data. The performance was compared in terms of the accuracy, precision, recall, F1 score through MIT-BIH arrhythmia database. The achieved scores indicate 92.3%, 90.98%, 92.20%, 90.72% in terms of the accuracy, precision, recall, F1 score, respectively.

Research Trends of Random Number Generators using Deep Learning (딥러닝 기술을 적용한 난수 생성기 연구 동향)

  • Kim, Hyun-Ji;Lim, Se-Jin;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.449-451
    • /
    • 2022
  • 암호화 프로그램에서 난수생성기는 널리 사용되며 중요한 역할을 하므로 공격의 대상이 되기 쉽고, 따라서 높은 난수성을 확보해야 한다. 최근에는 인공 신경망 기술이 발달함에 따라 난수생성기에 딥러닝 기술을 적용하는 연구들이 다수 진행되었으며, 본 논문에서는 이러한 연구 동향에 대해 알아본다. 크게 난수를 생성하는 연구와 다음에 올 수를 예측하는 예측 공격으로 나뉜다. 공통적으로는 학습해야 할 대상인 난수가 시계열 데이터이므로 대부분의 연구들이 RNN, CNN-1D 신경망을 사용한다. 난수 생성을 위해서는 분류형 신경망이 아닌, 생성형 신경망과 강화학습을 주로 사용하였다. 대부분의 연구들이 NIST SP-800 테스트를 시행하였을 때 높은 난수성을 확보할 수 있었다. 이외에도 최근 양자 컴퓨터가 개발됨에 따라 양자 하드웨어로부터의 양자 난수 생성기에 대한 예측 공격에 관한 연구도 있다. 딥러닝 기반의 난수 생성기에 대해서, 향후에는 기존의 난수생성기보다 빠른 생성 속도를 달성할 수 있는 경량 구현에 대한 연구와 그에 대한 비교 및 평가가 있어야 할 것으로 생각된다.