• Title/Summary/Keyword: 신경망분류기

Search Result 326, Processing Time 0.035 seconds

A Method of Machine-Printed Hangul Recognition using Character and Combined-Grapheme Recognizers (낱자 인식기와 자소 조합 인식기를 혼용한 인쇄체 한글 인식방법)

  • 장승익;임길택;김호연;정선화;남윤석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.244-246
    • /
    • 2003
  • 본 논문에서는 낱자 인식기와 자소 조합 인식기를 혼용한 저품질 인쇄체 한글의 고성능 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6형식과 기타 형식의 문자, 총 7종으로 분류한, 입력문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위(HRU: Hangul recognition unit)로 분리하여 인식한다. 각 인식 단위 영상에서 추출한 방향각 특징을 다층신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.80%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 23.61%의 오류가 감소한 것이다.

  • PDF

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

A Study on the design and Structure of Multi-Layer Perceptron for Effective Classifying Objects (객체의 분류를 위한 효율적인 다층퍼셉트론의 설계 및 구조에 관한 연구)

  • Lee, Yong-Kyu;Ko, Hyeong-il;Lee, Yillbyung
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.803-805
    • /
    • 2014
  • 다층 퍼셉트론 분류기는 그 패턴 분류 성능이 훌륭하여 오랜 기간 동안 여러 응용분야에서 사용되어 왔다. 그러나 다른 분류기보다 학습시간이 오래 소요된다는 점이 문제로 지적받아 왔다. 따라서 본 논문은 회전하는 객체의 분류를 위하여 다층 퍼셉트론의 학습시간을 줄이는 효율적인 신경망 시스템을 제안한다. 주성분 분석법을 이용하여 원 데이터의 정보를 가장 잘 잘 나타내도록 변환한 뒤, 그 결과를 다층 퍼셉트론 분류기의 입력으로 사용하였다. 제안하는 시스템은 기존 다층 퍼셉트론 분류기와 비교하였을 때 학습시간을 줄이면서 좀 더 높은 인식률을 보였다.

Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network (신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류)

  • Kim, Ahyoung;Jang, Eun-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • The mechanism of emotion is complex and influenced by a variety of factors, so that it is crucial to analyze emotion in broad and diversified perspectives. In this study, we classified neutral and negative emotions(sadness, fear, surprise) using arousal evaluation, which is one of the psychological evaluation scales, as well as physiological signals. We have not only revealed the difference between physiological signals coupled to the emotions, but also assessed how accurate these emotions can be classified by our emotional recognizer based on neural network algorithm. A total of 146 participants(mean age $20.1{\pm}4.0$, male 41%) were emotionally stimulated while their physiological signals of the electrocardiogram, blood flow, and dermal activity were recorded. In addition, the participants evaluated their psychological states on the emotional rating scale in response to the emotional stimuli. Heart rate(HR), standard deviation(SDNN), blood flow(BVP), pulse wave transmission time(PTT), skin conduction level(SCL) and skin conduction response(SCR) were calculated before and after the emotional stimulation. As a result, the difference between physiological responses was verified corresponding to the emotions, and the highest emotion classification performance of 86.9% was obtained using the combined analysis of arousal and physiological features. This study suggests that negative emotion can be categorized by psychological and physiological evaluation along with the application of machine learning algorithm, which can contribute to the science and technology of detecting human emotion.

Vocal and nonvocal separation using combination of kernel model and long-short term memory networks (커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.261-266
    • /
    • 2017
  • In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.

Automatic Classification of Frequently Asked Questions Using Class Embedding and Attentive Recurrent Neural Network (클래스 임베딩과 주의 집중 순환 신경망을 이용한 자주 묻는 질문의 자동 분류)

  • Jang, Youngjin;Kim, Harksoo;Kim, Sebin;Kang, Dongho;Jang, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.367-370
    • /
    • 2018
  • 웹 또는 모바일 사용자는 고객 센터에 구축된 자주 묻는 질문을 이용하여 원하는 서비스를 제공받는다. 그러나 자주 묻는 질문은 사용자가 직접 핵심어를 입력하여 검색된 결과 중 필요한 정보를 찾아야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자 질의를 입력 받아 질의에 해당하는 클래스를 분류해주는 문장 분류 모델을 제안한다. 제안모델은 웹이나 모바일 환경의 오타나 맞춤법 오류에 대한 강건함을 위해 자소 단위 합성곱 신경망을 사용한다. 그리고 기계 번역 이외에도 자연어 처리 부분에서 큰 성능 향상을 보여주는 주의 집중 방법과 클래스 임베딩을 이용한 문장 분류 시스템을 사용한다. 457개의 클래스 분류와 769개의 클래스 분류에 대한 실험 결과 Micro F1 점수 기준 81.32%, 61.11%의 성능을 보였다.

  • PDF

A Method of Machine-Printed Hangul Recognition using Grapheme Recognizer (낱자 특징 기반 자소 인식기를 이용한 인쇄체 한글 인식방법)

  • Jang, SeungIck;Nam, Youn-Seok
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.351-354
    • /
    • 2004
  • 본 논문에서는 낱자에서 추출한 특징을 입력으로 사용하는 자소 인식기를 이용한 저해상도 인쇄체 한글 영상의 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6 형식과 기타 형식의 문자, 총 7 종으로 분류한 뒤, 입력 문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위로 구분하여 인식한다. 각 HRU는 낱자에서 추출한 방향각 특징을 입력으로 사용하는 다층 신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층 신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.99%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 15.83%의 오류가 감소한 것이다.

  • PDF

Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks (차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계)

  • Kim, Wook-Dong;Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF