• Title/Summary/Keyword: 신경근 전기자극

Search Result 74, Processing Time 0.026 seconds

The effect of neuromuscular electrical stimulation combined with mirror therapy on static balance, weight support and ankle movement in chronic stroke patients (신경근 전기자극과 거울치료를 함께 적용한 중재가 만성기 뇌졸중 환자의 정적 균형, 체중 분포 및 발목 움직임에 미치는 영향)

  • Lee, Dong Geon
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • Background: The purpose of this study was investigated of effect of neuromuscular electrical stimulation combined with mirror therapy on static balance, weight support and ankle movement incline with chronic stroke patients. Design: Two-group pretest-posttest design. Methods: Thirty chronic stroke patients participated in this study. The study design is a two-group pretest-posttest design. A total of 30 people participated in the study, and 15 people were each assigned to the experimental group and control group. Experimental group received neuromuscular electrical stimulation combined with mirror therapy 30 minutes, and conventional physical therapy 30 minutes. Control group received conventional physical therapy 30 minutes. Both groups were conducted 5 times a week for 4 weeks. static balance and weight support was measured by force plate and ankle movement incline was measured by goniometer. Results: As a result of comparing the static balance, weight support and ankle movement incline change between experimental group and control group, statistically significant differences were found in all variables (p<.05). In the evaluation before and after the intervention, there was a statistically significant difference in all variables in the experimental group (p<.05), but there was no statistically significant difference in the control group (p>.05). Conclusion: Neuromuscular electrical stimulation combined with mirror therapy intervention improves static balance, increase paretic side weight support and ankle movement incline in chronic stroke patients. It could be an effective intervention for improve static balance, weight support and ankle movement for chronic stroke patients.

The Effects of Short Neck Flexion Exercise in Proprioceptive Neuromuscular Facilitation and Neuromuscular Electrical Stimulation on Swallowing Function in Patients with Chronic Stroke (고유수용성신경근촉진법의 짧은 목 굽힘 운동과 신경근전기자극치료가 만성 뇌졸중 환자의 삼킴 기능에 미치는 효과)

  • Kim, Kyoungdon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • Purpose : The purpose of this study was to examine the effects of short neck flexor strengthening in proprioceptive neuromuscular facilitation and neuromuscular electrical stimulation on swallowing function in patients with chronic stroke and to provide basic data for swallowing rehabilitation in stroke patients. Method : The study involved 30 chronic stroke patients who visited ${\bigcirc}{\bigcirc}$ General Hospital in Daegu Metropolitan City between March and July, 2017. The subjects were randomly assigned to either an experimental group (n=15) or a control group (n=15). Both groups underwent traditional swallowing rehabilitation therapy for 30 minutes five times a week over a six-week period. The experimental group performed short neck flexor exercises, which are part of the proprioceptive neuromuscular facilitation, for 30 minutes three times a week over a six-week period. The control group performed neuromuscular electrical stimulation for 30 minutes three times a week over a six-week period. Based on its results, changes in the patients' swallowing function and degree of food intake were analyzed. Result : In terms of the ASHA NOMS scale and new VFSS scale, the experimental group and the control group showed statistically significant changes in ten sub-items and six sub-items, respectively. Statistically significant differences in one sub-item were found between the groups. Conclusion : PNF-based short neck flexion exercise appear to be effective at improving swallowing function of stroke patients with dysphagia.

Effect of Rehabilitation Exercise and Neuromuscular Electrical Stimulation on a Visual Analysis Scale and on Functional Capacity Performed For 8-weeks in a Patient With Patellofemoral Pain Syndrome (무릎넙다리 동통증후군 환자의 8주간 재활운동과 신경근전기자극치료가 통증척도와 기능적 수행능력에 미치는 영향)

  • Han, Sang-Wan
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.33-42
    • /
    • 2004
  • The purpose of this study was to assess the effect of rehabilitation exercise and neuromuscular electrical stimulation on a visual analysis scale and functional visual analysis scale regarding functional capacity. A total of 7 consecutive patients with the complaint of patellofemoral pain syndrome who received this diagnosis from a sports medicine physician were recruited to assess the effect of rehabilitation exercise and neuromuscular electrical stimulation (NMES) on Visual Analog Scale (VAS) and Functional Visual Analog Scale (FVAS), functional capacity patients with patellofemoral pain syndrome. The exercise rehabilitation consisted of a complex training program requiring five treatments a week for eight weeks. The training program consisted of four phases, and each lasted for two weeks. Statistical analyses were one-way ANOVA with repeated measures. The results were as follows: (1) There were significant differences in the VAS and FVAS during 8-weeks of rehabilitation exercise and neuromuscular electrical stimulation (p<.01). (2) There were no significant differences in the functional capacity during 8-weeks of rehabilitation exercise and neuromuscular electrical stimulation (p<.05). In conclusion, at the end of the eight weeks of this rehabilitation program and neuromuscular electrical stimulation, a significant reduction was found in VAS and FVAS, but there was no significant difference in functional capacity at the end of the treatment.

  • PDF

The Effects of Muscle Fatigue by Transcutaneous Electrical Nerve Stimulation (경피신경전기자극이 근피로에 미치는 영향)

  • Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • The purpose of this study was to investigate the changes of muscle power by transcutaneous electrical nerve stimulation(TBNS), low frequency-low intensity(20pps, invisible muscle contraction intensity), low frequency-high intensity(20pps, visible muscle contraction), high frequency-low intensity(100pps, invisible muscle contraction intensity) and high frequency-high intensity(100pps, visible muscle contraction). The results were as follows. 1. Increased muscle power after 30 minutes of treatment by low frequency-low intensity TENS, and post-treatment 30 minutes muscle power were increased more than pre-treatment power(p<0.05). 2. Decreased muscle power after a 30 minute treatment by low frequency-high intensity TENS, and after the 30 minute treatment was terminated muscle power didn't recover to pre-treatment levels. 3. Decreased muscle power after 30 minute treatment by high frequency-low intensity TENS, but post-treatment 30 minute, muscle power didn't recover to pre-treatment levels. 4. The muscle power was remarkably decreased by high frequency-high intensity TENS after 30 minute treatment, in addition treatment terminated after 30minutes didn,t recover to pre-treatment power(p<0.05). 5. Lower frequency-low intensity TENS are good methods for preventing muscle fatigue, buty high intensity (TENS) are increased muscle fatigue. 6. Traditional TENS by high frequency-low intensity is a good method for preventing muscle fatigue.

  • PDF

The effects of Electrical Stimulation Therapy on NT-3 Expression in the Denervated Neuromuscular Junction in Rat (전기자극치료가 흰쥐 탈 신경근연접부에서 NT-3의 발현에 미치는 영향)

  • Nam Ki-Won;Koo Hyun-Mo;Cheon Song-Hee;Lee Yun-Seop;Kang Jong-Ho;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.63-71
    • /
    • 2004
  • Denervated skeletal muscle produces muscle atrophy as well as changes at the neuromuscular junction which leads to terminal axonal sprouting and an ultrastructural remodeling. NT-3 is expressed in adult muscle and motoneurons. Normally NT-3 has a potential role in regulating adult neuromuscular jungtion and recovering following muscle atrophy. Also, it could influence synaptic neurotransmission between motoneurons and skeletal muscle cells. The purpose of this study was to investigate the effect of electrical stimulation therapy(EST) on NT-3 expression in neuromuscular junction following sciatic nerve transsection in rats. After EST application during 7 days, the immunoreactivity of NT-3 was increased in neuromuscular junction

  • PDF

The Change of H Reflex by Neuromuscular Electrical Stimulation (신경근전기자극에 의한 H 반사의 변화)

  • Lee, Jeong-Woo;Kim, Tae-Youl
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • The purpose of this study was to determine whether neuromuscular electrical stimulation(NMES), applied over the antagonist or the agonist, would alter the H reflex. Attention was focused on the roles of stimulus location. We used normal eight subjects without neuromuscular disease which were divided into 3 groups; the subjects were diveded into group of antagonist, agonist, antagonist-agonist. All groups were meted of eight subjects. Neuromuscular electrical stimulation was administered for 15 minutes. All subjects were subjected to three tests, including a pre-test, post-test and post-20 minute test. The data were analyzed by repeated measures ANOVA and paired t-test. The results were as follows; 1. H latencies were significantly increased in agonist and antagonist-agonist group (p<.01). 2. H/M intervals were significantly increased in agonist and antagonist-agonist group (p<.01). 3. H amplitudes were significantly increased in agonist (p<.001) and antagonist-agonist group (p<.01). 4. H/M ratios were significantly decreased in agonist and antagonist-agonist group (p<.01). In agonist group. H-reflex amplitudes and H/M ratios were more significantly decreased than antagonist group. Future studies will need to determine what influence NMES may have on the excitability of spinal motor neurons in people having UMN syndrome.

  • PDF

Changes in Median Frequency of Quadriceps Muscle According to Application Modes of Neuromuscular Electrical Stimulation (신경근전기자극 적용양식에 따른 대퇴사두근의 중앙주파수 변화)

  • Choi, Soo-Hee;Oh, Myung-Hwa;Kim, Tae-Youl;Jeong, Jin-Gyu
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2005
  • This study assigns each 8 of 24 normal persons to control group(Group I), strength increase group(Group II) and endurance increase group(Group III) to analyze differences in changes of strength and endurance with surface electromyography and kinetics according to application modes of neuromuscular electrical stimulation(NMES). Group I had not any treatment, group II performed 15 repeated contraction with 60% intensity of maximal voluntary isometric contraction(MVIC) by setting 10-sec on time and 50-sec off time and group III conducted 30 repeated contraction with 30% intensity of MVIC by setting 10-sec on time and 20-sec off time. For neuromuscular electrical stimulation, 2,500 Hz of Russian current, 35 pps of pulse rate and 200 of pulse width. Neuromuscular electrical stimulation was conducted by five times for total 4 weeks. Before and after experimentmotor unit action potential of vastus medialis, rectus femoris and vastus lateralis were measured with sEMG, median frequency(MDF) was analyzed, and thus the following results were obtained. There was significant difference in the period of measuring vastus medialis and rectus femoris in change of MDF and interaction among groups with analysis of surface electromyography before and after neuromuscular electrical stimulation(p<.001) and in particular, there was a remarkable change among groups according to the period of measurement. In conclusion, NMES influenced changes of strength and endurance according to its application modes and in particular, it was found that strength increment application had a significant influence on strength increment in applying short-time NMES.

  • PDF

Decrement and Recovery of Maximal Isometric Contraction by Frequency during NMES (신경근전기자극 주파수에 따른 최대 등척성 수축력의 감소 및 회복)

  • Lim, Sang-Wan;Jeong, Jin-Gyu;Jung, Dae-In;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study was to determine the effect of muscle fatigue by neuromuscular electrical stimulation(NMES). Using Biodex System 3PRO(Biodex Medical Systems Inc, USA), experiment was conducted as to the normal group(I) composed of fifteen adults and the patient group(II) composed of fifteen patients with spastic hemiplegia. As to each group, maximal tolerated intensity(MTI) and maximal tolerated isometric contraction(MTIC) in electric currents yielded by low rate(20 pps) and high rate(100 pps) neuromuscular electrical stimulation and the aspects of decrease and restoration of the isometric contraction were examined, and their strength decrement index(SDI) and strength recovery index(SRI) were also calculated. 1. As for MTI in NMES, the MTI of the group II was higher than that of the group I in both low rate and high rate NMES. In comparison within group, MTI of group II was significantly higher in high rate NMES rather than in low rate NMES(p<0.05). 2. In comparison of MTIC between groups, the group I showed higher in both low rate and high rate NMES. In comparison within group, MTIC of group II was significantly higher in high rate NMES rather than in low rate NMES(p<0.01). 3. As for SDI, both groups showed highest SDI in high rate NMES, but no significant differences could be observed. 4. As for SRI, both groups showed significantly low SRI in low rate NMES(p<0.01, p<0.05), and comparison between groups showed no significant differences could be observed. These result lead us to the conclusion that muscle fatigue was influenced by frequency, high rate NMES was lower at SDI and higher at SRI on compare to low rate NMES, therefor, a further studies concerning electrical stimulation should consider differences each frequency in response to treatment.

  • PDF

A Case of Becker's Type Congenital Myotonia (Becker형 선천성 근긴장증 1례)

  • Yun, Sung-Hwan;Hah, Jung-Sang;Lee, Jun
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.1
    • /
    • pp.125-130
    • /
    • 1999
  • Congenital myotonia is a hereditary disorder of the skeletal muscle. The most characteristic features of the disease are myotonia and variable muscular hypertrophy. Molecular biologic investigations have revealed that mutations in the gene of the human skeletal muscle chloride ion channel protein are a cause of the disease. The Becker's type congenial myotonia is clinically similar to the autosomal dominantly inherited congenital myotonia (Thomsen's disease). Both disorders are characterized electrophysiologically by increased excitability of muscle fibers. reflected in clinical myotonia. In general, Becker's type congenital myotonia is more severe than Thomsen's disease in muscular hypertrophy and weakness. The authors recently experienced a 25-year-old female patient who has no family-related disease history and who has conspicuous muscular hypertrophy and the stiffness with muscles which occurred from the age of 3 or 4. Clinically she showed the authors a percussion myotonia. On electrophysiological study, exercise and repetitive stimulation of the abductor digiti quinti muscle disclosed a decline in the compound muscle action potential. Biopsy of biceps muscle revealed enlargement of muscle fibers with marked nuclear internalization. After the oral taking the Mexiletine, the patient showed a favorable turn a little with her stiffness of muscles. So we authors are reporting one case of Becker's type congenital myotonia with review of literatures.

  • PDF

Influence of Neuromuscular Electrical Stimulation on MEF2C and VEGF Expression of Neonatal Rat Skeletal Muscle During Suspension Unloading (신경근전기자극이 체중 부하를 제거한 신생 흰쥐 골격근 조직의 MEF2C 및 VEGF 발현에 미치는 영향)

  • Koo, Hyun-Mo;Lee, Sun-Min
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The aim of this study was to identify the effect of suspension unloading (SU) and electrical stimulation upon the development of neonatal muscular system. For this study, the neonatal rats were randomly divided into three groups: a control group, an experimental group I, and an experimental group II. The SU for experimental group I and II was applied from postnatal day (PD) 5 to PD 30. The electrical stimulation for soleus muscle of experimental group IIwas applied from PD 16 to PD 30 using neuromuscular electrical stimulation (NMES), which gave isometric contraction with 10 pps for 30 minutes twice a day. In order to observe the effect of SU and ES, this study observed myocyte enhancer factor 2C (MEF2C) and vascular endothelial growth factor (VEGF) immunoreactivity in the soleus muscles at PD 15 and PD 30. In addition, the motor behavior test was performed through footprint analysis at PD 30. The following is the result. At PD 15, the soleus muscles of experimental group Iand II had significantly lower MEF2C, VEGF immunoreactivity than the control group. It proved that microgravity conditions restricted the development of the skeletal muscle cells at PD 15. At PD 30, soleus muscles of the control group and experimental group II had significantly higher MEF2C, VEGF, immunoreactivity than experimental group I. It proved that the NMES facilitated the development of the skeletal muscle cells. At PD 30, it showed that SU caused the decrease in stride length of parameter of gait analysis and an increase in toe-out angle, and that the NMES decreased these variations. These results suggest that weight bearing during neonatal developmental period is essential for muscular development. They also reveal that NMES can encourage the development of muscular systems by fully supplementing the effect of weight bearing, which is an essential factor in the neonatal developmental process.

  • PDF