• 제목/요약/키워드: 신경감시

검색결과 171건 처리시간 0.035초

저주파를 이용한 신경자극 치료장치 개발 (A development of low frequency electrical nerve stimulator for muscle care and diet)

  • 정영수;현웅근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.462-466
    • /
    • 2002
  • 본 논문에서는 8Bit MPU를 이용한 신경자극 치료장치가 설계되었다. 개발되고 있는 시스템은 저전력 MPU와 전압 boosting회로, 과전류 감시 및 이상전류 보정회로, 펄스의 상태를 알려주는 LED display 및 BUTTO과 펄스를 우리 몸에 전달시켜주는 Pad로 이루어져있다. 입력된 9V의 전압은 전압 boosting회로를 통해 120V까지 승압된다. 펄스는 단상 직사각형파, 대칭성 이상파, 교대 대칭성 이상파등의 형태로 우리 몸에 입력되어 근육의 수축과 이완을 시켜주는 알고리즘을 적용하였다.

  • PDF

침입탐지시스템 개선을 위한 탐지기술의 분석 및 조사 (An Analysis of Intrusion Detection Techniques for the Improvement of IDS)

  • 김학주;김태경;정태명
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (하)
    • /
    • pp.2057-2060
    • /
    • 2003
  • 현재 구현중인 침입탐지 시스템인 Secure Fortress에 대해 그 특성과 구조에 대해서 살펴보고 시스템의 개선을 위해 새로운 침입탐지 기술인 유전알고리즘, 신경망, 면역시스템을 조사 및 분석하여 연구 동향이나 발전 가능성 등의 요소에 비추어 개선 방향을 정한다. 유전 알고리즘은 다윈의 자연선택설을 바탕으로 선택, 재생 및 교배, 돌연변이의 과정을 통해 솔루션을 도출하는 방식이며 면역시스템은 생물학적인 면역 체계에서처럼 시스템이 스스로를 보호한다는 개념에서 출발하여 유닉스의 시스템 콜을 이용하여 시스템 프로세스 중심의 지식베이스를 구성하고 침입행위를 규정한다. 또한 신경망은 감시대상이 되는 요소에 따라 통계정보를 등급화 하는 일련의 과정을 통해 비정상적인 행위를 초기 학습 후 시스템에 순응하는 기술을 사용하여 고정적인 규칙에서 탈피한 여러 가지 장점을 갖는다 차후에는 이 알고리즘의 도입을 위한 서비스별 침입대상 요소 선정 등의 준비 작업이 필요하다.

  • PDF

신경계 중환자실에서 기계호흡 그래프 파형 감시와 분석 (Monitoring and Interpretation of Mechanical Ventilator Waveform in the Neuro-Intensive Care Unit)

  • 박진
    • 대한신경집중치료학회지
    • /
    • 제11권2호
    • /
    • pp.63-70
    • /
    • 2018
  • Management of mechanical ventilation is essential for patients with neuro-critical illnesses who may also have impairment of airways, lungs, respiratory muscles, and respiratory drive. However, balancing the approach to mechanical ventilation in the intensive care unit (ICU) with the need to prevent additional lung and brain injury, is challenging to intensivists. Lung protective ventilation strategies should be modified and applied to neuro-critically ill patients to maintain normocapnia and proper positive end expiratory pressure in the setting of neurological closed monitoring. Understanding the various parameters and graphic waveforms of the mechanical ventilator can provide information about the respiratory target, including appropriate tidal volume, airway pressure, and synchrony between patient and ventilator, especially in patients with neurological dysfunction due to irregularity of spontaneous respiration. Several types of asynchrony occur during mechanical ventilation, including trigger, flow, and termination asynchrony. This review aims to present the basic interpretation of mechanical ventilator waveforms and utilization of waveforms in various clinical situations in the neuro-ICU.

신경회로망을 이용한 연삭가공의 트러블 인식에 관한 연구(I) (A Study on the Monitoring System of the Grinding Troubles Utilizing Neural Networks(l))

  • 하만경;곽재섭;송지복;김건회;김희술
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.149-155
    • /
    • 1996
  • Recent researches in the trouble monitoring system of grinding process have emphasized the use of deep knowledge. Such works include the monitoring and diagnostic systems for cylindrical grinding using sensors on chatter vibration and grinding burn during the process. But, since grinding operations are especially related with a lalrge amount of ambique parameters, it is effectively difficult to detect the grinding troubles occuring during the grinding process. In this paper, monitoring system for grinding utilizes the neural networks based on grinding power signatures. The monitoring system of grinding operations, which makes use of PDP neural networks, is presented. Then, the implementation results by computer simulations and experimental data with respect to chatter vibration and grinding burn are compared.

  • PDF

ART2 신경회로망을 이용한 밀링공정의 공구마모 진단 (Tool Wear Monitoring in Milling Operation Using ART2 Neural Network)

  • 윤선일;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법 (Improving Performance of Human Action Recognition on Accelerometer Data)

  • 남정우;김진헌
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.523-528
    • /
    • 2020
  • 스마트 모바일 장치의 확산은 인간의 일상 행동 분석을 보다 일반적이고 간단하게 만들었다. 행동 분석은 이미 본인 인증, 감시, 건강 관리 등 많은 분야에서 사용 중이고 그 유용성이 증명되었다. 본 논문에서는 스마트폰의 가속도 센서 신호를 사용하여 효율적이고 정확하게 행동 인식을 수행하는 합성곱 신경망(모델 A)과 순환 신경망까지 적용한(모델 B) 심층 신경망 모델을 제시한다. 모델 A는 batch normalization과 같은 단순한 기법만 적용해도 이전의 결과보다 더 작은 모델로 더 높은 성능을 달성할 수 있다는 것을 보인다. 모델 B는 시계열 데이터 모델링에 주로 사용되는 LSTM 레이어를 추가하여 예측 정확도를 더욱 높일 수 있음을 보인다. 이 모델은 29명의 피실험자를 대상으로 수집한 벤치마크 데이트 세트에서 종합 예측 정확도 97.16%(모델 A), 99.50%(모델 B)를 달성했다.

LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구 (Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound)

  • 김의열;이상권;장지욱
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.813-822
    • /
    • 2012
  • LCD 생산라인의 공정 로봇에서 방사되는 비정상 작동 소음은 로봇의 결함 탐지에 사용된다. 이 신호의 장점은 상대적으로 낮은 민감도에 비해 단지 마이크로폰을 이용하여 다수의 결함을 확인할 수 있는 것이다. 결함요소 추출을 위한 웨이브렛 변환(WPT)과 불량의 분류를 위한 인공신경망 회로(ANN)이 본 논문에서 사용되었다. 결과적으로, 비정상 작동 소음이 기계요소의 결함 진단에 효율적으로 사용될 수 있다.

신경망을 이용한 차량 객체의 그림자 제거 (Cast-Shadow Elimination of Vehicle Objects Using Backpropagation Neural Network)

  • 정성환;이준환
    • 한국ITS학회 논문지
    • /
    • 제7권1호
    • /
    • pp.32-41
    • /
    • 2008
  • 비디오를 이용한 비전기반 감시에서 움직이는 객체의 추적은 GMM (Gaussian Mixture Model)을 사용한 배경영상과 현재영상의 차이법을 이용한다. 문턱치를 통해 생성된 이진영상을 이용하여 객체 추적을 할 경우 객체 정보가 아닌 그림자에 의하여 객체가 병합되는 현상이 나타난다. 본 논문에서는 신경망(Backpropagation Neural Network)을 이용하여 그림자를 제거하는 방법을 제안하였다. 10개의 동영상에서 객체영역과 캐스트그림자(Cast-Shadow)영역의 훈련용 이미지에서 특징 값을 추출하여 신경망을 훈련시켰다. 캐스트그림자를 제거하는 방법은 이진영상의 객체로 추정되는 영역에서 그림자를 분리하는 방법을 기초로 하며 기존의 그림자 제거 알고리즘 (SNP, SP, DNM1, DNM2, CNCC)보다 그림자 제거 성능이 (16.2%, 38.2%, 28.1%, 22.3%, 44.4%)로 높게 나타났다.

  • PDF

다양한 재해분석을 위한 AI 기술적용 사례 소개 (Application of AI technology for various disaster analysis)

  • 이기하;레수안히엔;응웬반지앙;응웬반린;정성호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

자기학습 신경망을 이용한 원자력발전소 고리 2호기 실시간 열성능 진단 시스템 개발 (Development of a Real-Time Thermal Performance Diagnostic Monitoring System Using Self-Organizing Neural Network for KORI-2 Nuclear Power Unit)

  • Kang, Hyun-Gook;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.36-43
    • /
    • 1996
  • 본 논문은 원자력발전소 열성능 감시 시스템의 PC기반 구현에 관한 연구 내용이다. 이 시스템은 열성능 감시와 진단을 플랜트 운전중에 실시간으로 수행할 수 있다. 고리 원전2호기를 목적호기로 원형 시스템을 구성하여 시험해 보았다. 원자력발전소의 열 주기 시스템은 대단히 복잡하고 구성 요소간에 상호 영향이 커서, 그 분석과 고장 진단에 어려움이 많다. 본 연구에서는 열 주기를 효율적으로 표현하고, 계산시간을 단축하기 위해 성능 진단 변수를 설정하였다. 비정상 상태에서의 진단 변수의 특성 패턴 변화를 인식하기 위해 자기학습 신경망의 일종인 퍼지아트맵을 이용하였다. 시험을 통해 이 알고리듬이 비정상 상태를 감지하고 고장 원인을 성공적으로 규명하는 것을 보였으며, 운전원의 편의를 위해 그래픽 사용자 인터페이스를 구축하였다.

  • PDF