• Title/Summary/Keyword: 신겨회로망

Search Result 2, Processing Time 0.015 seconds

Development of a high Impedance Fault Detection Method in Distribution Lines using Neural network (신경회로망을 이용한 배전선로 고저항 사고 검출 기법의 개발)

  • 황의천;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 1999
  • This paper proposed a high impedance fault detection method using a neural network on distribution lines. The $\upsilon-i$ characteristic curve was obtained by high impedance fault data tested in various soil conditions. High impedance fault was simulated using EMTP. The pattern of High Impedance Fault on high density pebbles was taken as the learning model, and the neural network was evaluated on various soil conditions. The average values after analyzing fault current by FFT of even.odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method .ethod .

  • PDF

Determination of Rice Milling Ratio by Visible / Near-Infrared Spectroscopy (가시광선 / 근적외선 분광 분석법을 이용한 쌀의 정백수율 측정)

  • 김재민;민봉기;최창현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.333-342
    • /
    • 1997
  • The objective of this research was to develop model equations for measuring rice milling ratio by using visible / HIR spectroscopy. Twelve kinds of brown rice(n = 149) were milled to obtain various milling ratio ranged from 86% to 94%. Visible/NIR spectra were collected with a spectrophotometer with sample transport module. The reflectance and transmission spectra were measured in the range of 400~2, 500nm and 600~1, 400nm, respectively, with 2 nm intervals. Multiple linear regression(MLR), Partial least square (PLS), and Artificial neural network(ANN) were used to develop models. Model developed with reflectance spectra showed better prediction results then those with transmission spectra. The MLR model with six-wavelength obtained from first derivative spectra gave to the best results for measuring the rice milling ratio(SEP = 0.535, , $r^2$ = 0.980). The PLS model(SEP = 0.604, $r^2$= 0.976) and ANN model(SEP = 0.566, $r^2$= 0.978) also can be used to determine the rice milling ratio effectively.

  • PDF