• Title/Summary/Keyword: 식종원

Search Result 36, Processing Time 0.021 seconds

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Characteristics of Methane Production from Piggery Manure Using Anaerobic Digestion (혐기성 소화를 통한 돈분의 메탄 생성 특성)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.113-120
    • /
    • 2007
  • Anaerobic batch tests were performed to evaluate the characteristics of methane production from piggery manure such as the ultimate methane yield (UMY), the kinetic constant and the maximum methane production rate. The kinetic behavior of anaerobic degradation of piggery manure was assumed as a first order reaction. The UMY, the first order kinetic constant and the maximum methane production rate were 0.27~0.44L $CH_4/gVS$, $0.161{\sim}0.280d^{-1}$ and 0.043~0.120L $CH_4/d$, respectively. Reactor of piggery manure as the self-seed source of anaerobic digestion resulted in longer acclimation time than reactors seeded with anaerobic digested sludge (ADS). But there was no little difference in the UMY between the two seed materials. The anaerobic digestion can be effective for the treatment of piggery manure containing high concentration of solids, the two-stage anaerobic digestion is, however, thought to be more effective than the traditional single one.

  • PDF

Composting of food wastes using easily separable and reusable synthetic bulking agent (회수 재이용이 용이한 합성팽화제를 이용한 음식물쓰레기 퇴비화)

  • Kwon, Nam-Joo;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.71-79
    • /
    • 2007
  • The effects of synthetic bulking agent (SBA) on the composting reaction were investigated with a lab-scale composting reactor. The positive effects of SBA addition were observed in composting reactions where relatively tough composting conditions like high water content and no addition of seed compost were provided. Such effects were assumed to be caused by the enhanced free air space in compost mixture. It was additional benefits of using SBA, a bulking agent, that the amount of saw dust, another bulking agent, could be reduced to 50% compared to composting without SBA. Although SBA would be used as a bulking agent, two options are thought to be very important to ensure composting reaction well. One is that optimal water content should be maintained around 60%. The other is that saw dust is inevitable bulking agent to prevent food waste from lumping, so combination use of two ones are necessary.

  • PDF

Operation of UASB Reactor for Treatment of Dairy Wastewaters (유가공폐수 처리를 위한 UASB 반응조 운전)

  • Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.37-45
    • /
    • 1995
  • The performance and the operational problems of UASB(Upflow Anaerobic Sludge Blanket) reactor for treatment of dairy wastewaters were investigated. Synthetic milk wastewater was successfully treated up to the loading rate of 3.9kg $COD/m^3.day$, with a specific gas production rate of 1. 23 I/I. day and a COD removal efficiency of over 90%. However, the sludge rising was observed at the loading rate of 2.1kg $COD/m^3.day$, due probably to the formation of scum layer at the surface of settling compartment. The BMP(biochemical methane potential) of raw milk wastewater and ice cream wastewater, measured by using SBT(serum bottle test), were 0.135 and 0.66ml $CH_4/mg\;COD_{added}$, respectively. The sludge activity increased more than 8 times from 0.159g $COD-CH_4/g$ VSS. d during 90 days of operation.

  • PDF

Anaerobic Biodegradation of Lignin by BMP Test and Measurement of Lignin-derived Compound Using GC & GC/MS (BMP법에 의한 리그닌의 혐기성 분해 및 GC와 GC/MS을 이용한 리그닌 분해산물 측정)

  • Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.46-51
    • /
    • 2008
  • The traditional view of the fate of lignin under anaerobic conditions is that it is recalcitrant because molecular oxygen is required for depolymerization. The presence of lignin is apparently the most important factor affecting the biodegradability of ligneous materials. The initial step in the degradation of ligneous material to smaller intermediates is catalyzed by enzymes secreted by microorganisms and is generally regarded as the rate limiting step in the microbial mineralization of organic matter. Biochemical methane potential (BMP) test, typically used to assess anaerobic biodegradability of liquid wastes with added nutrients and bacteria, have been adapted to assess initial biodegradation of ligneous material under anaerobic conditions. A method based on selective inhibition of microorganism activity, by 3% toluene, has been used to measure using the initial degradation rate of ligneous material and the accumulation of lignin-derived compounds.

  • PDF

Experimental Evaluation of Intermittent Leachate Recirculation Anaerobic System to digest Source from Separated Food Waste (단속식 침출수 순환형 음식물류 폐기물 혐기성 소화 공법에 대한 실험적 특성 파악)

  • Lee, Je-Seung;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.57-66
    • /
    • 2014
  • The leachate recirculation anaerobic digestion system has the advantage of stable methane gas generation compared with existing one phase systems. In this study, an anaerobic digestion system fed with source separated food waste from school cafeteria was studied with different food waste/inoculum anaerobic sludge volume ratios (8:2, 3:7, 2:8). From this study, leachate recirculation anaerobic reactor with food waste/inoculum anaerobic sludge volume ratio of 2:8 that is 9 gVS/L of OLR(Organic Loading Rate) had the highest gas production. Also this anaerobic reactor showed daily decrease of H2S and NH3 contents in produced gas. Average biogas yield was 1.395 m3 Biogas/kg VS added. Other anaerobic reactors with food waste/inoculum anaerobic sludge volume ratio of 8:2 and 3:7 stopped methane gas production.

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Enhanced Acidification Efficiency of Sewage Sludge by Seaweed Addition (해조류 첨가를 통한 하수슬러지 산발효 효율 증대)

  • Shin, Sang-Ryong;Lee, Mo-Kwon;Kim, Min-Gyun;Hong, Seong-Min;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In the present work, the synergistic effect of seaweed addition on organic acid production from sludge was investigated. The batch experiment was conducted at various mixing ratios of sewage sludge and seaweed (100:0, 75:25, 50:50, 25:75, 0:100 on a COD basis) under the substrate concentration of 20 g COD/L. The fermentation temperature was conducted under mesophilic condition ($35^{\circ}C$) and a heat-treated ($90^{\circ}C$ for 20 min) anaerobic digester sludge was used as a seeding source to suppress the methanogenic activity, The results showed that the amount of organic acid production increased as the content of seaweed increased: organic acids were 1.45, 3.22, 4.28, 5.24 and 4.82 g COD/L for the mixing ratio of 100:0, 75:25, 50:50, 25:75 and 0:100 respectively. The synergistic effect was calculated based on the organic acid production of individual sludge and seaweed, and was found to be 0.92, 1.14, 1.26 g COD/L at the mixing ratio of 75:25, 50:50 and 25:75, which indicates that 40% of synergy was obtained when 25% of seaweed was added. The synergistic effect could be ascribed to the high C/N ratio and biodegradability of seaweed.

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste (하수슬러지와 음식물쓰레기의 혼합소화시 혼합비율과 기질농도에 따른 분해특성)

  • Shin, Hang-Sik;Kim, Hyun-Woo;Han, Sun-Kee;Kang, Seok-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • This research was conducted to find the optimal condition in codigestion of food waste and sewage sludge with various mixing ratios. The analysis of degradation characteristics were based on the variations of methane production as well as methane production rate (MPR). BMP values were getting higher as the addition of foodwaste increased. But the lag-phase were prolonged when the foodwaste was over 40%, Nonlinear regression was conducted with the cumulative methane production data. Not only thermophilic but mesophilic condition, 40% of foodwaste addition showed maximum MPR. Higher mixing ratio which is over 50% were unprofitable in gaining higher MPR values. The most important factor in thermophilic co-digestion was substrate concentration. But in mesophilic co-digestion, both substrate concentration the mixing ratio had major effects on MPR. The most probable reasons of the synergetic effects in co-digestion of foodwaste and sewage sludge were the balanced nutrient expressed as C/N ratio and increased kinetic constants of hydrolysis by the mixed co-substrates.

  • PDF