• Title/Summary/Keyword: 식용유지

Search Result 189, Processing Time 0.027 seconds

Contents and Estimated Intakes of Trans Fatty Acids in Korean Diet (한국인의 식품 중 트란스 지방산의 함량과 섭취량 추정)

  • Kim, Jong-Hee;Jang, Kyung-Won;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1002-1008
    • /
    • 2000
  • The purpose of this study was to provide the fundamental information for establishing the database needed to estimate total intakes of trans fatty acids in Korea. The amounts of trans fatty acids contained in 164 samples including 25 samples of margarines, 21 samples of shortenings, 19 samples of vegetable salad and cooking oils, 53 samples of confectionery products, 18 samples of bakery products, 19 samples of dairy products, and 9 samples of animal fats and meats were analyzed by capillary gas liquid chromatography. The average amounts of trans fatty acids in those foods were calculated and expressed as gram per one serving. Then, the average daily intakes of trans fatty acids per capita were estimated using the analyzed amounts of trans fatty acids and the amount of yearly production for those foods. The amounts of trans fatty acids per 100 g of lipids were $2.11{\sim}33.83%$ (14.66% on average) in margarines, $1.47{\sim}44.48%$ (14.21% on average) in shortenings, $0.18{\sim}3.82$ (1.54% on average) in vegetable salad and cooking oils, $0{\sim}45.81%$ (10.92% on average) in confectionery products, $0{\sim}18.32%$ (7.87% on average) in bakery products, $0.90{\sim}4.54%$ (2.27% on average) in dairy products, and $0.61{\sim}6.07%$ (2.24% on average) in animal fats and meats. Major isomers of trans fatty acid in the sample foods were $C_{18:1}$ and $C_{18:2}$. As a result, the korean average daily intake of trans fatty acids in korea was estimated to be 2.3 g per capita. The amounts of trans fatty acids consumed from each selected food were as follows: 0.35 g from margarines, 0.57 g from shortenings, 0.11 g from vegetable salad and cooking oils, 0.65 g from confectionery products, 0.07 g from bakery products, 0.14 g from dairy products and 0.21 g from animal fats and meats.

  • PDF

Quantitative Analysis of Contents of Vegetable Oils in Sesame Oils by NIRS (근적외선분광광도법을 이용한 참기름중 이종식용유지 정량법에 관한 연구)

  • Kim, Jae-Kwan;Kim, Jong-Chan;Ko, Hoan-Uck;Lee, Jung-Bock;Kim, Young-Sug;Park, Yong-Bae;Lee, Myung-Jin;Kim, Myung-Gil;Kim, Kyung-A;Park, Eun-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.257-267
    • /
    • 2007
  • The possibility of rapid non-destructive qualitative and quantitative analysis of vegetable oils such as perilla, com, soybean and rapaseed oils in sesame oils was evaluated. A calibration equation calculated by MPLS(Modified Partial Least Squares) regression technique was developed and coefficients of determination for perilla oil, com oil, soybean oil and rapaseed oil contents were 0.9992, 0.9694, 0.9795 and 0.9790 respectively. According to the data obtained from validation study, $R^2$ of contents of perilla, com, soybean, rapaseed oils were 0.997, 0.848, 0.957 and 0.968, and SEP of content of them 0.747, 5.069, 3.063 and 3.000 by MPLS respectively. The results indicate that the NIRS procedure can potentially be used as a non-destructive analysis method for the rapid and simple measurement of sesame oil mixed with other vegetable oils. The detection limits of the NIRS for perilla oil, com oil, soybean oil and rapaseed oil were presumed as 2%, $15{\sim}20%,\;15{\sim}20%$ and 10%, respectively.

Development of Adsorbents for Edible Oil Refining using Agricultural Byproducts (농산부산물을 이용한 식용유지 정제용 흡착제 개발)

  • Choi, Eun-Soo;Gil, Bog-Im
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.3
    • /
    • pp.396-401
    • /
    • 2010
  • The purpose of this study was the development of adsorbents for the refining of edible oil using agricultural byproducts such as rice hull, barley hull, and soybean hull as well as evaluation of their adsorptive effects against free fatty acids and lutein, the major impurities of soybean oil. Ash-type and carbon-type adsorbents were produced from the hulls. Ash-type adsorbents such as rice hull ash (RHA), barley hull ash (BHA) and soybean hull ash (SHA) were effective for the removal of free fatty acids; the acid value of degummed soybean oil was decreased by 86% upon treatment with 5% SHA. However, carbon-type adsorbents such as rice hull carbon (RHC), barley hull carbon (BHC), and soybean hull carbon (SHC) were effective for removing lutein, resulting in a 52% decrease in the lutein content of degummed soybean oil upon treatment with 5% SHC. Whereas ash-type adsorbents were composed of mesopores or macropores with small surface areas and total pore volume, carbon-type adsorbents were mainly composed of micropores with large surface areas and total pore volume.

Analysis of Benzo[α]pyrene Content in Edible Oils from Korean Market (시중에 유통되는 식용유지 중 benzo[α]pyrene 함량 분석)

  • Nam, Hejung;Seo, Ilwon;Lee, Kyueun;Lee, Songyoung;Shin, Han-Seung
    • Food Engineering Progress
    • /
    • v.13 no.3
    • /
    • pp.211-215
    • /
    • 2009
  • Concentrations of benzo[$\alpha$]pyrene in edible oils from Korean market were evaluated by high performance liquid chromatography. Benzo[$\alpha$]pyrene known of the carcinogenic polycyclic aromatic hydrocarbons(PAHs), has been found at variable concentrations in several foods. This is associated with several factors during the process including contaminated raw materials, exposure of environment, and procedure of process or cooking. The levels of benzo[$\alpha$]pyrene were ranged from 0.5 to 1.4 $\mu$g/kg in virgin olive oil. Benzo[$\alpha$]pyrene contents in refined and virgin olive oil, sesame oil, soybean oil, corn oil, sunflower oil, safflower oil, and processed oil were 0.6-1.0 $\mu$g/kg, 0.9-1.3 $\mu$g/kg, 0.6-3.3 $\mu$g/kg, 0.5-1.1 $\mu$g/kg, 1.2-1.7 $\mu$g/kg, 1.0-2.1 $\mu$g/kg, and 1.0-1.4 $\mu$g/kg, respectively.

Comparison of Oxidative Stability for the Thermally-oxidized Vegetable Oils using a DPPH Method (DPPH법에 의한 식용유지의 열산화 안정성 비교)

  • Lee, Jae-Min;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-137
    • /
    • 2007
  • The 2,2-diphenyl picrylhydrazyl (DPPH) method, which can be used to predict the oxidative stability of edible oils, was previously reported by our research group. Not only free radical scavenging antioxidants but also radicals from oxidized oils are capable of reacting with DPPH radicals, thereby reducing the absorbance of DPPH. In this study, the optimum sample size of edible oils for the DPPH method was determined, and the oxidation of the edible oils was monitored via DPPH, coupled with other conventional methods. The optimum sample size was determined as 1.5 g using soybean oil. Soybean, corn, virgin olive, and refined olive oils were thermally oxidized for 3 hr at $180^{\circ}C$ and analyzed via DPPH, conjugated dienoic acid (CDA) value, and p-anisidine value (p-AV) protocols. Soybean and corn oils were found to be more sensitive to thermal oxidation than virgin and refined olive oils, on the basis of the CDA value and p-AV measurements. The DPPH method can indicate the inherent radical scavenging activity of unoxidized samples, the time required for the depletion of antioxidants, and the rate of degradation of the antioxidants. The soybean and corn oils evidenced higher levels of free radical scavenging compounds, required more time for the consumption of inherent antioxidants, and also manifested steeper antioxidant degradation rates than olive oils, based on the results of DPPH analysis. The DPPH method, accompanied by other conventional methods, may prove useful in predicting the degree of oxidation of vegetable oils.

Physicochemical Properties of Frying Ginseng and Oils Derived from Deep-frying Ginseng (수삼튀김 시 튀김유 종류에 따른 수삼 및 유지의 이화학 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Lee, Sox-Su;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.941-947
    • /
    • 2013
  • To increase the consumption of frying ginseng, we investigated the physicochemical properties of frying ginseng and different edible oils processed through frying ginseng: soybean oil (SO), corn oil (CO), olive oil (OO), and grape seed oil (GO). We tested various parameters, including temperature (130, 160, 180, and $200^{\circ}C$), frying time (2.0, 2.5, 3.0, and 3.5 min), and frying amount (up to 30 times). The physicochemical properties of the fried ginseng and oils were evaluated for changes in acid value, peroxide value, free fatty acid content, acrylamide formation, color, and viscosity of oils. The acid value and peroxide value of the oils increased with frying temperature and amount. Saturated fatty acids increased and unsaturated fatty acids decreased with the amount of frying, but oleic acid in CO and GO and linoleic acid in OO increased. The concentration of acrylamide in fried ginseng increased as the frying temperature and amount increased and was the lowest in OO. The lightness and redness of the frying oil color decreased and its yellowness increased in SO and CO, but the lightness increased (redness and yellowness decreased) in OO. In particular, CO was significantly browned with increasing frying amounts. The viscosity of the frying oils increased with frying amount, with CO showing the lowest increases in viscosity of the oils. As a result, the optimal ginseng frying condition found was 2 min 30 sec at $180^{\circ}C$, regardless the type of oils.

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood (식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향)

  • Baek, Ji Hye;Lee, So-Young;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.205-212
    • /
    • 2020
  • Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.

Changes in the Quality of Astringent Persimmon during Removal of Astringency by Carbon Dioxide ($CO_2$탈삽과정 중 떫은감의 품질변화)

  • 변효숙;박석희;노영균;성전중
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.392-397
    • /
    • 1999
  • The quality changes during the removal of astringecy by CO$_2$gas at 2$^{\circ}C$ and 20$^{\circ}C$ of three varieties of persimmons named 'Tonewase', 'Chungdobanshi' and 'Sagokshi' were examined. Astringency index and tannin content showed rapid decrease at 20$^{\circ}C$ and gradual decrease at 2$^{\circ}C$. All was edible 2days from the removal of astringency at 20$^{\circ}C$, while 'Tonewase' and 'Sagokshi' were edible on 6days and 'Chungdobanshi' on 10days after treatment at 2$^{\circ}C$. Soluble solid contents was decreased a little(1∼3%) during the removal of astringency. Hardness was decreased slowly but, kept over 1.0kg/$\phi$5mm till edible period in all varieties at 2$^{\circ}C$ and 20$^{\circ}C$. The hardness of 'Chungdobanshi' was kept well after the removal of astringency at 2$^{\circ}C$. No noticeable color changes in all varieties during treatment. Injury fruits were noticeable in only 'Tonewase' after the removal of astringency treatment at 2$^{\circ}C$.

  • PDF

Analytical method of aflatoxins in edible oil and infant-children foods (식용유지와 영유아식품 중 아플라톡신 분석방법)

  • Hu, Soo-Jung;Park, Seung-Young;Kim, Soon-Sun;Lee, Joon-Goo;Song, Ji-Young;Kang, Eun-Gi;Lee, Hyun-Sook;Cho, Dae-Hyun
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.150-157
    • /
    • 2011
  • Aflatoxins are secondary metabolites of the molds of Aspergillus flavus and Aspergillus parasiticus. They are highly carcinogenic compounds and can affect a wide range of vegetable commodities such as cereals (especially corn), nuts, peanuts, fruits and oil seeds, in the field and during storage. In fact, oilseeds are often stored for weeks in conditions that promote the mould growth, and the possible consequent presence of aflatoxins in oilseeds can lead to their transfer in oil. In addition, aflatoxins can be found as a natural contaminant in multi-cereals and beans making baby food for infants and young-children. The objective of this study was to validate the liquid extraction method or develop an analytical method for edible oil and infant-children foods. Therefore, this study developed condition of extract for aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) in edible oil using a high performance liquid chromatography with florescence detector (HPLC/FLD). Aflatoxins were extracted from edible oil samples by means of MSPD (Matrix solid phased dispersion), utilizing $C_{18}$ as dispersing material and purified by using immunoaffinity column. The gression line coefficients were above 0.999. The recoveries for aflatoxins ranged from 85.9 to 93.0%, and relative standard deviations were below 5.7%. The new developed method of aflatoxins effectively enhanced recoveries by using MSPD-Immunoaffinity column compared with liquid extraction. The analytical method for liquid extraction of aflatoxin was appropriate for infant-children food. Reviewing the current method, the recoveries of aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) were 89.5~92.3%.