• Title/Summary/Keyword: 식생 분류

Search Result 802, Processing Time 0.028 seconds

Characteristic Community Type Classification of Forest Vegetation in South Korea (우리나라의 산림식생에 대한 군락형 분류)

  • Yun, Chung-Weon;Kim, Hye-Jin;Lee, Byung-Chun;Shin, Joon-Hwan;Yang, Hee Moon;Lim, Jong Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.504-521
    • /
    • 2011
  • This study was carried out phytosociological forest community analysis, the sampled dada were collected and studied by 1,456 plots from 1993 to 2009 for 17 years in the 22 mountain area of South Korea. Four opposed species groups were classified and 10 vegetation units were divided as a result of forest vegetation classification. The 10 units were closely correlated with major environmental factors such as geological features, climatic conditions, topographical configurations, and etc. Therefore the forest vegetation of South Korea could be conclusively abstracted by 10 vegetation units and 7 eco-types.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees (소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구)

  • Jung, Yoon-Young;Kim, Sang-Wook
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.201-214
    • /
    • 2020
  • This study aimed to early detect damaged trees by pine wilt disease using the vegetation indices of UAV images. The location data of 193 pine wilt disease trees were constructed through field surveys and vegetation index analyses of NDVI, GNDVI, NDRE and SAVI were performed using multi-spectral UAV images at the same time. K-Means algorithm was adopted to classify damaged trees and confusion matrix was used to compare and analyze the classification accuracy. The results of the study are summarized as follows. First, the overall accuracy of the classification was analyzed in order of NDVI (88.04%, Kappa coefficient 0.76) > GNDVI (86.01%, Kappa coefficient 0.72) > NDRE (77.35%, Kappa coefficient 0.55) > SAVI (76.84%, Kappa coefficient 0.54) and showed the highest accuracy of NDVI. Second, K-Means unsupervised classification method using NDVI or GNDVI is possible to some extent to find out the damaged trees. In particular, this technique is to help early detection of damaged trees due to its intensive operation, low user intervention and relatively simple analysis process. In the future, it is expected that the utilization of time series images or the application of deep learning techniques will increase the accuracy of classification.

Relationships between Community Unit and Environment Factor in Forest Vegetation of Mt. Dutasan, Pyeongchang-gun (평창 두타산 산림식생의 군집유형과 입지환경요인의 상관관계)

  • Lee, Jeong Eun;Shin, Jae Kwon;Kim, Dong Gap;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.275-287
    • /
    • 2017
  • The purpose of this study was to analyze forest vegetation type classification and relationships between the type and environment factor in Mt. Dutasan. Data were collected by total of forty six plots using Z-M phytosociological method from June to October, 2016, and analyzed by vegetation classification, canopy layer structure and relationships between vegetation unit and environment factor using coincidence methods. As a result of vegetation type classification, Quercus mongolica community group was classified at a top level of vegetation hierarchy that was classified into Rhododendron schlippenbachii community and Betula costata community. R. schlippenbachii community was divided into Lychnis cognata group and R. schlippenbachii typical group. L. cognata group was subdivided into Veratrum oxysepalum subgroup and L. cognata typical subgroup. B. costata community was divided into Fraxinus mandshurica group and Betula schmidtii group. F. mandshurica group was subdivided into Weigela subsessilis subgroup and Cimicifuga heracleifolia subgroup. Therefore the forest vegetation was composed of six vegetation units with two kinds of bisected species groups and fourteen species groups. As the result of an analysis of canopy layer structure, there were two kinds of structures with monotonous structures V. oxysepalum subgroup (vegetation units 1), L. cognata typical subgroup (vegetation units 2), W. subsessilis subgroup (vegetation units 4) and complicated structures R. schlippenbachii typical group (vegetation units 3), C. heracleifolia subgroup (vegetation units 5), Betula schmidtii group (vegetation units 6). The vertical layer structure of vegetation unit 5 was the most developed and vegetation unit 6 had the lowest coverage of herb layer. According to the correlation between vegetation unit and environmental factor, R. schlippenbachii community (vegetation units 1~3) and B. costata community (vegetation units 4~6) were classified based on 1,100 m of altitude, middle slope, twenty of slope degree, twenty percents of bare rock and thirty centimeters of DBH in tree layer. R. schlippenbachii community (vegetation units 1~3) showed positive correlation with altitude, topography and B. costata community (vegetation units 4~6) showed negative correlation tendency with them.

Improvement of Land Cover over Asian region via Comparison of the Land Cover Data Sets (지면피복 자료들의 비교연구를 통한 아시아지역 지면피복 자료 개선)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.49-54
    • /
    • 2007
  • 고분해능복사계(AVHRR) 자료로부터 산출한 아시아지역 지면피복 분류자료들 (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd)의 분류특성을 분석하였으며 이를 근거로 하여 이 지역에 대한 지면피복의 분류를 시도하였다. 서로 다른 지면피복 분류 자료들의 비교를 위하여 지도 투영법을 일치시켰으며 지면피복 정의가 유사한 유형들만 비교하였다. 세 지면피복 자료에서 분류가 모두 일치하는 비율은 33.57%이고 3 자료 중 두 자료에서 분류가 일치하는 비율은 49.69%로 나타났다. 전체적으로 나대지(사막), 도시 및 혼합림과 같이 식생의 생물리적 특성이 뚜렷한 유형들에서는 분류의 일치율이 높게 나타났다. 반면에 농지, 낙엽활엽수림, 및 낙엽침엽수렴과 같이 식생의 생물리적 특성이 유사한 유형에서는 일치율이 낮게 나타났다. 분류에 사용된 기본 입력자료수, 지면피복 유형수,분류기법 및 입력 자료의 전처리 수준 등이 지면피복 분류 결과에 차이를 유발한 것으로 판단된다. 지면피복 자료들의 비교결과와 각 유형별 식생지수의 평균 계절변동 특성을 이용하여 이 지역에 대한 지면피복 분류자료를 보완하였다.

  • PDF

A New Association of Gueldenstaedtio-Zoysietum japonicae: A Syntaxonomical and Syngeographical Description of the Southernmost Population of Gueldenstaedtia verna in South Korea (잔디-애기자운군집(신칭): 애기자운 최남단 분포 개체군의 군락분류와 군락지리)

  • Lee, Jung-A;Kim, Jong-Won
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.40-54
    • /
    • 2017
  • The mound grave of Korean traditional funeral culture is a unique habitat which is a Zoysiagrass lawn being sustainable in proper management. We phytosociologically described an unusual Zoysiagrass vegetation with Gueldenstaedtia verna by the Zürich-Montpellier School's method and analyzed eco-floristic characteristics. A new association, Gueldenstaedtio-Zoysietum japonicae ass. nov. hoc loco, was identified and subdivided into festucetosum ovinae, typicum, and trifolietosum repensae. The subassociations were distinguished by the difference in species composition resulting from site accessibility and lawn management method. The association was assigned as not only a regional but also a locally-limited vegetation type, which distributes on a particular microhabitat with strong continentality in the Daegu regional subdistrict of Bioclimatological division. The Zoysiagrass vegetation of Korea was considered as a continental type apparently different from the oceanic type of Zoysion japonicae (Miscanthetea sinensis, Caricetalia nervatae). Mound graves in Korea should be acknowledged as a meaningful habitat for the in-situ conservation of biodiversity and phytocoenosen, despite being a secondary grassland of Gueldenstaedtio-Zoysietum japonicae.

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri (지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-Hwan;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.

Phytosociological Vegetation Classification and Community Characteristics in Maruguem (the Ridge Line) Area of Mt. Jirisan (Yuksipryeong to Cheonwangbong), the Baekdudaegan (백두대간 지리산권역(육십령-천왕봉 구간) 마루금의 식물사회학적 유형분류 및 군집 특성)

  • Song, Ju Hyeon;Kim, Ho Jin;Lee, Jeong Eun;Cho, Hyun Je;Park, Wan Geun;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this study, the forest vegetation structure in the Maruguem (ridge line) area from Yuksipryeong to Cheonwangbong, Baekdudaegan, was analyzed using vegetation classification, importance values, species diversity, and NMS. Data were collected using 373 quadrates in a Braun-Blanquet vegetation survey conducted from May to October 2020. Vegetation was classified into nine vegetation units, which were verified using DCA analysis. Vegetation units 1-5, which were grouped by sub-alpine region, showed high importance values, mainly for sub-alpine vegetation, such as Abies koreana, Picea jezoensis, Pinus koraiensis, and Betula ermanii. In Maruguem, which is not high above sea level, importance values for species such as Pinus densiflora and Quercus serrata were high due to the topographical characteristics of the ridge. The A. koreana community (vegetation unit 1-5), which had a relatively high average elevation, had higher species diversity compared with that of other vegetation units. According to NMS analysis, for abiotic environmental factors, there was a positive correlation between vegetation units 1, 2, 4, and 5 and elevation. Overall, this study describes all low-elevation area vegetation (P. densiflora and Lindera erythrocarpa) to high-elevation area vegetation (A. koreana and P. jezoensis) as well as the characteristics of the Baekdudaegan ridge vegetation that did not include valley vegetation.

Classification of Warm Temperate Vegetation Using Satellite Data and Management System (위성영상을 이용한 난대림 식생 분류와 관리 시스템)

  • 조성민;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • Landsat satellite images were analyzed to study vegetation change patterns of warm-temperate forests from 1991 to 2002 in Wando. For this purpose, Landsat TM satellite image of 1991 and Landsat ETM image of 2002 were used for vegetation classification using ENVI image processing software. Four different forest types were set as a classification criteria; evergreen broadleaf, evergreen conifer, deciduous broadleaf, and others. Unsupervised classification method was applied to classily forest types. Although it was impossible to draw exact forest types in rocky areas because of differences in data detection time and rough resolution of image, 2002 data revealed that total 2,027ha of evergreen broadleaf forests were growing in Wando. Evergreen broadleaves and evergreen conifers increased in total areas compared to 11 years ago, but there was sharp decrease in deciduous broadleaves. GIS-based management system for warm-temperate forest was done using Arc/Info. Geographic and attribute database of Wando such as vegetation, soils, topography, land owners were built with Arc/Info and ArcView. Graphic user interface which manages and queries necessary data was developed using Avenue.

The Community Structure of Forest Vegetation in Mt. Gaya, Chungcheongnam-Do Province (충청남도 가야산 산림식생의 군집구조)

  • Yun, Chung-Weon;Lee, Chan-Ho;Kim, Hye-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.5
    • /
    • pp.379-389
    • /
    • 2007
  • This study was carried out to classify forest vegetation structure of Mt. Gaya from April to October in 2006 using phytosociological analysis methodology of Z-M schools. One hundred study sites(quadrat) were surveyed in the area. The forest vegetation was classified into 3 community groups such as Pinus densiflora community group, Cornus controversa community group and artificial forest group. P, densiflora community group was subdivided into 4 communities such as Rhododendron schlippenbachii community. Salix gracilistyla community, Meliosma oldhamii community and P. densiflora typical community. R. schlippendbachii community was subdivided into Potentilla dickinsii group(subdivided into Carpinus coreana subgroup and Melandrynum firmum subgroup) and R. schlippenbachiitypical group. Cornus controversa community group was also subdivided into 4 communities such as Hovenia dulcis community, Quercus aliena community, Ribes maximowicianum community and C. controversa typical community. Artificial forest type indicated 3 communities such as Larix leptolepis community, Pinus rigida community and Castanea crenata community. Accordingly, the vegetation pattern of the surveyed areas were classified into 3 community groups, 11 communities, 2 groups, and 2 subgroups and the forest vegetation was classified into 13 units in total. It is also believed that C. coreana subgroup and M. oldhamii community could be a source for a significant basic data for making vegetation hierarchy and forest distribution zone in the Korean peninsula. H. dulcis community was also considered to be one of the important genetic resources; therefore, those distribution areas are required to be institutionally protected and managed in the near future.