• Title/Summary/Keyword: 식생공

Search Result 288, Processing Time 0.027 seconds

Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee (하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석)

  • Park, Heeseong;Lee, Du Han
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.233-244
    • /
    • 2021
  • This study investigated the application of terrestrial light detection and ranging (LiDAR) to inspect the defects of the vegetated levee. The accuracy of vegetation filtering techniques was compared by applying filtering techniques on photogrammetric point clouds of a vegetated levee generated by terrestrial LiDAR. Representative 10 vegetation filters such as CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, and ISL were applied to point cloud data of the Imjin River levee. The accuracy order of the 10 techniques based on the results was ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, and CIVE. Color filters show certain limitations in the classification of vegetation and ground and classify grass flower image as ground. Morphological filters show a high accuracy of the classification, but they classify rocks as vegetation. Overall, morphological filters are superior to color filters; however, they take 10 times more computation time. For the improvement of the vegetation removal, combined filters of color and morphology should be studied.

Hydraulic Experiment on the Effects of Beach Erosion Prevention with Flexible Coastal Vegetation (연성 식생모형에 의한 해빈침식방지 특성에 관한 실험적 연구)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Coastal vegetation consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of currents and waves and sediment stabilization are often listed among these services. From this point of view, artificial seaweed is an effective method of controlling sea bed sediment and stabilization without damaging the landscape or the stability of the coastline. A series of hydraulic experiments were performed in a wave channel with regular and irregular waves to examine the effect of artificial seaweed in relation to scouring and beach erosion prevention. Based on the results of these experiments, the coastal vegetation model is efficient against scouring and beach erosion.

Update of Stability Evaluation Program for Levee Revetment (호안 안정성평가 프로그램의 개선)

  • Kim, Ki-Tae;Jeon, Jae-Ryung;Yoon, Moon-Sang;Kim, Sang-Mun;Choi, Heung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.416-416
    • /
    • 2011
  • 최근 하천의 생태성이 강조된 식생, 사석, 목재 등의 자연 재료를 사용하는 친환경적인 호안이 고안되어 시공되고 있다. 이러한 호안들은 홍수시 유실에 따른 안정성의 확보와 생태성을 고려하는 것이 중요하다. 본 연구는 기존에 개발되어진 돌망태호안, 식생호안 및 식생블록호안의 안정성평가 프로그램에 개발한 사석안정성 산정식을 이용하여 사석호안공에 대한 안정성평가를 추가하였다. 각각 호안에서의 밑다짐공의 최대세굴심과 폭의 산정으로 밑다짐공의 안정성평가를 추가하여 호안 안정성평가에 대해 폭 넓은 평가를 제시하였다. 개발된 호안 안정성평가 프로그램에 사석호안공과 밑다짐공의 안정성을 추가하여 김상문, 최흥식(2008)에 의해 Data-Base를 기반으로 개발된 Menu-Driven방식의 호안 안정성평가 프로그램을 개선하였다. 개선을 통하여 호안의 축조는 물론 생태성이 강조된 호안설계에 의한 자연형 하천복원 시에 많은 도움이 될 것으로 기대된다.

  • PDF

Response of Terrestrial Insect Community to the Vegetation Invasion at a Sand-Bed Stream (모래하천에서 식생 침입에 대한 육상곤충 군집의 반응)

  • Cho, Geonho;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.44-53
    • /
    • 2017
  • In order to investigate the response in fauna and biological communities of terrestrial insects to the vegetation encroachment on the sandbar, species composition, species diversity, functional species traits and community structure of land-dwelling insects sampled by a pit-fall trap were compared at the bare and vegetated sandbar of a typical sand-bed stream, the Naeseong Stream, Korea. Species diversity of the insects was increased but their density was decreased as the riparian vegetation encroached at the sandbar. In particular, indicator species of bare sandbar such as Cicindela laetescripta and Dianemobius csikii, were found at the bar sandbar. The insect communities were clearly classified at the bare and vegetated sandbar according to coverages of riparian plants. The food web of the bare sandbar was composed of detritus - detritivore and scavenger - predator consisted mainly of Coleoptera. On the other hand, the food web of the vegetated sandbar was composed of plants - sucking and chewing herbivore - parasitoid and predator. These results showed that biodiversity of terrestrial insects was increased, food web was changed from grazing to detritus food chain, and insect fauna specific bare sandbar disappeared as the riparian vegetation invaded on the sandbar of a sand-bed stream.

Cause-based Categorization of the Riparian Vegetative Recruitment and Corresponding Research Direction (하천식생 이입현상의 원인 별 유형화 및 연구 방향)

  • Woo, Hyoseop;Park, Moonhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.207-211
    • /
    • 2016
  • This study focuses on the categorization of the phenomenon of vegetative recruitment on riparian channels, so called, the phenomenon from "white river" to "green river", and proposes for the corresponding research direction. According to the literature review and research outputs obtained from the authors' previous research performed in Korea within a limited scope, the necessary and sufficient conditions for the recruitment and retrogression of riparian vegetation may be the mechanical disturbance (riverbed tractive stress), soil moisture (groundwater level, topography, composition of riverbed material, precipitation etc.), period of submergence, extreme weather, and nutrient inflow. In this study, two categories, one for the reduction in spring flood due to the change in spring precipitation pattern in unregulated rivers and the other for the increase in nutrient inflow into streams, both of which were partially proved, have been added in the categorization of the vegetative recruitment and retrogression on the riparian channels. In order to scientifically investigate further the phenomenon of the riparian vegetative recruitment and retrogression and develop the working riparian vegetative models, it is necessary to conduct a systematic nationwide survey on the "white to green" rivers, establishment of the categorization of the vegetation recruitment and retrogression based on the proof of those hypotheses and detailed categorization, development of the working mathematical models for the dynamic riparian vegetative recruitment and retrogression, and adaptive management for the river changes.

Application of Geo-Statistic and Data-Mining for Determining Sampling Number and Interval for Monitoring Microbial Diversity in Tidal Mudflat (갯벌 미생물 다양성 모니터링 시료 채취 개수 및 간격 선정을 위한 지구통계학적 기법과 데이터 마이닝 적용 연구)

  • Yang, Ji-Hoon;Lee, Jae-Jin;Yoo, Keun-Je;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1102-1110
    • /
    • 2010
  • Tidal mudflat is a reservoir for diverse microbial resources. Microbial diversity in tidal mudflat sediment can be easily influenced by various human activities. It is necessary to take representative samples to monitor microbial diversity in tidal mudflat sediments. In this study, we analyzed the microbial diversity and chemical characteristics of vegetation and non-vegetation tidal mudflat regions in the Kangwha tidal mudflat using geo-statistics and data-mining. According to the geo-statistical analysis, most correlation range values for the vegetation region were smaller than those for the non-vegetation region, which suggested that the shorter number and interval of sampling are required for the vegetation tidal mudflat environment due to its higher degree of chemical and biological complexity and heterogeneity. The data-mining analysis suggested that the organic content and nitrate were the major environmental factors influencing microbial diversity in the vegetation region while pH and sulfate were the major influencing factors in the non-vegetation region. Using the geo-statistical and data-mining integration approach, we proposed a guideline for determining the sampling interval and number to monitor microbial diversity in tidal mudflat.

Numerical Analysis on Drain Capacity and Vegetation Potential of Unsaturated Made-Planting Soil (불포화 인공 식재 지반의 배수 성능과 식생 가능 조건에 대한 수치해석적 분석)

  • Kim, Sung-Min;Kim, Choong-Eon;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.33-41
    • /
    • 2016
  • This study attempted to investigate drain capacity and vegetation potential of made-planting soil via finite element simulations. Engineering drain capacity of made-planting soil can be evaluated by an analysis of unsaturated soils. In a perspective for vegetation landscape, it is necessary to check whether the minimum amount of water in the made-planting soil can be supplied for the survival of plants. Herein, 1-m high soil column covered by made-planting soil were numerically simulated. Numerical results showed that how the coefficient of permeability of saturated soil and soil-water characteristics of unsaturated soil are considered significantly influences the drain capacity of soils. Variation in the volumetric water content within the Least Limiting Water Range (LLWR) provides us with information on whether the soil can contain a sufficient amount of water for the plants to survive the drought.