최근 AI와 로봇기술 등으로 개인정보를 포함한 데이터의 처리가 일상화됨에 따라 한국정부는 개인정보 비식별 조치 가이드라인 및 데이터 3법을 발표함으로써 개인정보 비식별화를 돕고자 하였다. 하지만 복잡한 비식별화 절차와 이의 효과에 대한 불명확함으로 기업들이 개인정보를 포함한 빅데이터의 활용에 어려움을 겪고, 동시에 시민단체나 소비자단체에서는 현 가이드라인에 따른 비식별화 절차가 개인정보를 보호하기에 충분하지 않다고 지적하고 있다. 본고에서는 비식별화 현황과 기술을 검토하고 현 가이드라인의 한계점을 보완 함으로써 데이터 활용 업체와 기관들의 정확한 비식별화를 돕고 빅데이터 활용의 활성화에 기여하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.297-300
/
2016
최근 빅데이터 산업이 발전하고 있는 상황에서 빅데이터 산업에 활용되는 개인정보의 보호에 관한 문제가 대두하고 있다. 빅데이터 산업에서 개인정보를 활용하기 위해서는 비식별화 조치를 해야 한다. 하지만 비식별화는 비식별화 평가 모델 자체의 취약성과 더불어 비식별화된 개인정보를 재식별화 하는 위험성도 존재한다. 본 논문은 적정성 평가 모델, 비식별화 조치 기술, 재식별에 관한 위험성을 연구하고 각 위험성에 대한 대응 방안을 통해 재식별화의 문제를 해결하여 빅데이터 산업에서 비식별화된 개인정보가 안전히 쓰일 수 있도록 해야 한다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.285-288
/
2017
비식별화 모델은 데이터 공유를 위한 모델로 원본데이터를 비식별화 변환 처리하여 개인정보를 보호함과 동시에 분석에 필요한 데이터를 외부에 제공하는 모델로 연구되어 왔다. 변환 방법으로는 삭제, 일반화, 범주화 기술 등이 주로 사용되며 변환 과정 중에는 재식별 가능성을 최소화하기 위해 k-익명성, l-다양성, t-근접성 혹은 differential privacy 등의 프라이버시 모델이 적용되고 있다. 하지만 변환된 비식별 데이터 세트는 필연적으로 원본 데이터 세트와 다른 값을 가지며 이는 결과적으로 최종 분석 결과에 영향을 주게 된다. 이를 위해 두 데이터 세트 간의 차이를 상이도(dissimilarity) 혹은 정보 손실율(information loss)이라는 지표로 측정 하고 있으며 본 지표는 비식별 데이터의 활용성을 평가 하는 데에 매우 중요한 역할을 한다. 본 연구에서는 비식별 데이터와 원본 데이터와 간의 차이를 도메인 기반의 절대적인 기준대비로 표현한 상이도 측정 방법을 제안하며, 그 유효성을 실데이터 기반의 실험을 통해 검증하였다.
Kim, Pyung;Lee, Seung-Woo;Seo, Dong-Min;Jung, Han-Min
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.90-93
/
2010
시맨틱 웹은 웹 환경에서 데이터의 의미를 표준화된 방법으로 표현함으로써 데이터의 상호 운용성을 보장하고 기계가 활용 가능한 데이터의 웹을 가능하게 해준다. 온톨로지에서 데이터는 식별자(URI)를 사용해서 의미가 명확화되고, 표준 기술 방법(RDF)를 통해서 어플리케이션 간 데이터의 통합 및 재사용을 가능하게 해준다. 최근 미국과 유럽을 중심으로 링크드 데이터 프로젝트를 통해서 시맨틱 데이터들의 상호연계가 활발하게 추진하고 있다. 그러나 다양한 출처들의 데이터를 연계하는 과정에서, 동일한 객체에 서로 다른 식별자가 할당된 경우 식별자를 통한 시맨틱 정보 연계에 문제가 발생할 수 있다. OWL에서는 동일 객체에 대한 2개 이상의 식별자가 부여된 경우 owl:sameAs를 이용해서 식별자들이 동일 객체를 가리키고 있음을 명시한다. 본 연구에서는 서로 다른 식별자를 가진 객체들이 owl:sameAs를 사용해서 동일 객체로 표현되었을 경우, 동일 객체에 부여된 식별자 정보를 효과적으로 관리하고, 이를 서비스에 활용하기 위한 관리 서버를 설계하였다. 관리 서버를 통해 동일 객체에 대한 식별자들의 체계적인 관리는 물론, 동일 객체를 찾기 위한 질의 횟수를 감소시켜서 서비스 소요시간을 줄일 수 있다.
With the development of data technology, storing and sharing of data has increased, resulting in privacy invasion. Although de-identification technology has been introduced to solve this problem, it has been proved many times that identifying individuals using de-identified data is possible. Even if it cannot be completely safe, sufficient de-identification is necessary. But current laws and regulations do not quantitatively specify the degree of how much de-identification should be performed. In this paper, we propose an appropriate de-identification criterion considering the time required for re-identification. We focused on the case of using the k-anonymity model among various privacy models. We analyzed the time taken to re-identify data according to the change in the k value. We used a re-identification method based on linkability. As a result of the analysis, we determined which k value is appropriate. If the generalized model can be developed by results of this paper, the model can be used to define the appropriate level of de-identification in various laws and regulations.
In this study, the method of quality measurement for the statistical usefulness of de-identified data was examined in terms of prediction accuracy by statistical modeling. In the era of the 4th industrial revolution, effective use of big data is essential to innovation through information and communication technology, but personal information issues are constrained to actively utilize big data. In order to solve this problem, de-identification guidelines have been established and the possibility of actual re-identification of personal information has become very low due to the utilization of various de-identification methods. On the other hand, strong de-identification can have side effects that degrade the usefulness of the data. We have studied the quality of statistical usefulness of the de-identified data by KLT model which is a representative de-identification method, A case study was conducted to see how statistical accuracy of prediction is degraded by de-identification. We also proposed a new measure of data usefulness of the de-identified data by quantifying how much data is added to the de-identified data to restore the accuracy of the predictive model.
Kim, Tae-Hong;Jung, Han-Min;Sung, Won-Kyung;Kim, Pyung
The Journal of the Korea Contents Association
/
v.12
no.1
/
pp.17-29
/
2012
In recent years, Linked Data that is published under an open license shows increased growth rate and comes into the spotlight due to its interoperability and openness especially in government of developed countries. However there are relatively few out-links compared with its entire number of links and most of links refer a few hub dataset. These occur because of absence of technology that identifies entities in Linked data. In this paper, we present an improved author entity resolution method that using representative properties. To solve problems of previous methods that utilizes relation with other entities(owl:sameAs, owl:differentFrom and so on) or depends on Curation, we design and evaluate an automated realtime resolution process based on multi-ontologies that respects entity's type and its logical characteristics so as to verify entities consistency. The evaluation of author entity resolution shows positive results (The average of K measuring result is 0.8533.) with 29 author information that has obtained confirmation.
Lee, Seungmin;Kwak, Seung-Jin;Oh, Sanghee;Park, Jin Ho
Journal of the Korean BIBLIA Society for library and Information Science
/
v.30
no.1
/
pp.29-51
/
2019
Most fields of society have constructed and utilized various name identifier systems such and International Standard Name Identifier(ISNI), Open Researcher and Contributor ID(ORCID), and Interested Parties Information System(IPI) in order to uniquely identify individual authors and institutions and to associate them to data related to creative works. Although it might be inevitable to apply name identifier systems in the current data environment with rapid association and integration of data across fields, there are many problems to be addressed when utilizing those systems. In order to overcome these problems and construct better information ecological system by associating and linking data from various fields, this research analyzed advanced cases for data integration based on ISNI. Through the analysis, it suggested managemental refinements for efficiently utilizing ISNI in data integration and association.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.1010-1011
/
2013
본 논문에서는 국방과학연구소에서 운용하는 KOMSAR(Korea Miniature Synthetic Aperture Radar)장비로 측정한 실제 항공기의 데이터를 이용하여 효율적인 표적식별을 수행하였다. 표적식별과정은 수신된 모든 데이터에 대하여 거리측면도를 구한 다음 4개의 표적으로 분리한 후, 효과적인 특성벡터를 구성하여 nearest neighbor(NN) 구분기로 표적식별 성능을 수행하였다. 표적식별수행 결과, 높은 구분성능으로 구분이 가능하였다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.606-608
/
2018
최근 CCTV나 블랙박스 등 멀티미디어 데이터를 생성해내는 장치의 사용이 늘어나고 있다. 이러한 대용량 멀티미디어 데이터가 증가함에 따라 사용자가 동영상과 같은 멀티미디어 데이터 내의 객체를 식별하기 위해서는 많은 시간을 할애하여 매뉴얼하게 일일이 찾아야 하는 한계점이 있다. 본 논문에서는 사용자가 동영상 및 이미지에서와 같은 멀티미디어 데이터에서 객체를 자동으로 식별할 수 있 수 있는 딥러닝 기반의 객체 식별 및 검색 모델을 제안한다. 제안하는 객체 식별 검색은 이미지 검색과 동영상 검색을 지원한다. 이미지 검색에서는 이미지에 존재하는 동일한 객체를 검색 대상 이미지들에서 객체를 식별하고, 이미지에 존재하는 객체를 검색하여 결과로 반환한다. 또한 동영상 검색에서는 동영상에서 검색하고자 하는 객체를 식별하고 객체가 출현하는 시간을 전처리과정을 통해 기록하며, 검색하고자 하는 동영상 내에 존재하는 객체의 검색이 가능하다. 따라서 사용자가 동영상에서 객체의 검색 시 키워드 검색이 가능하여 동영상을 모두 재생하서 객체를 식별해야 하는 번거로움을 해결할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.