• Title/Summary/Keyword: 식물플랑크톤 색소

Search Result 37, Processing Time 0.022 seconds

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Temporal and Spatial Distributions of Phytoplankton Pigment Concentration around the Korean Peninsula using Ocean Color Remote Sensing Imagery (해색위성영상을 활용한 한반도 주변 해역의 식물플랑크톤 색소농도의 시공간적 분포)

  • Kim Sang Woo;Cho Kyu Dae;Kim Young Seup;Kim Dong Sun;Choi Yoon Sun;Suh Young Sang
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.191-193
    • /
    • 2003
  • Temporal and spatial variability of phytoplankton pigment concentrations around the Korea Peninsula was described, using the monthly mean composite images of the SeaWiFS (Sea-Viewing Wide Field-of-View Sensor). The high pigment concentrations appear in the spring and fall in the East Sea The spring bloom in the southern regions (in April) occurs one month in advance in comparison with tint in the northern regions (in May). In summer season, the pigment concentrations are low all over the region in the East Sea And the high pigment concentrations exist yearly around warm stream along the coast of the East Sea, and in the coast of the West Sea and South Sea In particular, the high pigment concentrations linking near the mouth q the Yangze River to coast of South Sea in Korea appear during August to December.

  • PDF

Application of Photosynthetic Pigment Analysis Using a HPLC and CHEMTAX Program to Studies of Phytoplankton Community Composition (HPLC를 이용한 광합성색소 분석과 CHEMTAX 프로그램을 이용한 식물플랑크톤 군집조성 연구)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Yoon-Suk;Kim, Seong-Su;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2011
  • Many studies of the phytoplankton community structure have been conducted using the CHEMTAX program on the basis of the photosynthetic pigment concentrations measured by a HPLC (High-Performance Liquid Chromatography) technique. The CHEMTAX program determines the contribution of each phytoplankton class to total phytoplankton biomass (chlorophyll a) based on the ratios of marker pigment to chlorophyll a of phytoplankton group. In this study, the marker pigment/chlorophyll a ratios were investigated in phytoplankton species isolated from marine waters around the Korean peninsula. These results were used as the input pigment ratios of the CHEMTAX program to investigate phytoplankton community structure in Korean coastal waters (Yeoja and Gamak Bay). There were significant differences in the ratios of marker pigment to chlorophyll a among the different species within the same algal class. There was a significant difference between the values of our ratios and the previously used ratios in other regions of the world. When phytoplankton community composition was calculated using our initial ratios in Yeoja and Gamak Bay, our results were significantly different from the results calculated on the basis of initial ratios of marker pigment in phytoplankton suggested in other marine waters. The estimates of the contributions of the major algal groups (bacillariophyceae and dinophytes) to total chlorophyll a varied within 5% depending on the initial ratios chosen. The variations of estimates for the pico- and nanoplankton (cyanophytes and prasinophytes), which have relatively low contributions to total chlorophyll a, were higher than those for major algal group. Although the HPLC-pigment measurements combined with CHEMTAX analysis are useful for identifying and qualifying phytoplankton community structure, further researches for the pigment ratios of the dominant phytoplankton species presenting in a given area are also needed.

The Pigments Variation of Phytoplankton in the Seomjin and Yeongsan River estuary (섬진강과 영산강 하구의 식물플랑크톤 기원 색소분포 변동)

  • Jeon, Hyeji;Lee, Eugene;Son, Moonho
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • To investigate effect of variation in physiochemical conditions due to river discharge on phytoplankton, field surveys were conducted in the Seomjin and Yeongsan River estuaries from April to November 2016. The concentrations of DIN and DSi in Seomjin River estuary were gradually low as distance from upstream. On the other hands, the concentrations of DIN and DSi in Yeongsan River estuary were critically high at upstream, due to which is characterized as semi-enclosed eutrophic area. A total of 12 phytoplankton pigments were analyzed, and the distribution of each taxa was investigated using indicator for each phytoplankton taxa. Fucoxanthin, an indicator pigment of diatoms, showed an average of 0.61±1.00 ㎍ l-1 and 0.76±1.22 ㎍ l-1 in the Seomjin and Yeongsan River estuaries, respectively. Concentration of fucoxanthin was more than twice that of other pigments except chlorophyll a., indicating that diatoms were dominant taxa. Peridinin, an indicator pigment of dinoflagellate, showed some similar tendency to the microscopic observation, but mismatch results were also present, indicating a technical limitation of pigment analysis. Chlorophyll b, alloxanthin, and zeaxanthin, which are indicator pigments of green algae, cryptomonads, and cyanobacteria, were detected in both estuaries even though those taxa were not detected in microscopic observation. This indicates that the two estuaries were affected by freshwater species. Here, we can suggest that phytoplankton composition in estuary was directly influenced by the inflow from upstream. In particular, the phytoplankton population dynamics in Yeongsan River estuary was greatly associated with a large-scale artificial dyke, especially in summer rainy season. On the other hands, the seasonal and horizontal distribution of phytoplankton in Seomjin River estuary has changed along the salinity gradients and inflow-related changes.

The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of Yellow Sea (황해 중.동부 연안 수역의 조석전선이 식물 플랑크톤 생산력과 분포에 미치 는 영향)

  • 최중기
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.223-241
    • /
    • 1991
  • In order to study the formation and structure of tidal fronts and their influence on the distribution and productivity of phytoplankton in the outer of Kyonggi Bay, analyses on the water temperature data from 1977 to 1986 and 3 surveys from 1981 to 1986 were carried out in the mid0eastern coast of the Yellow Sea. Temperature gradients and dissolved oxygen gradients were implied that the tidal fronts are formed at the outer of the Kyonggi Bay along the western side of Tae-An peninsula from spring to summer. the formations of tidal fronts in this study area influence the distribution of phytoplankton and primary productivity. The standing stocks, chlorophyll concentrations and primary productivity of phytoplankton in the frontal area are higher than those of the outer stratified waters and the inner coastal mixed waters. These high production in the frontal area are resulted from good light condition and rich nutrient within the water columns. With a boundary of frontal area, there are relatively high chlorophyll concentrations and primary productivity in the coastal mixed waters while there are low chlorophyll concentrations and relatively high primary productivity in the stratified waters. These relatively high primary productivity in the outer area are resulted from the high potential production by nanoplankton in the surface layer and the high production of tychopelagic diatoms under the thermocline with the deep transparency.

  • PDF

Evaluation of Grinding Effects on the Extraction of Photosynthetic Pigments for HPLC Analysis (광합성 색소의 HPLC 분석을 위한 여과지 분쇄 효과 평가)

  • Jang, Su Jin;Park, Mi Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • High-Performance Liquid Chromatography (HPLC) is a widely used method for measuring the concentration of chlorophyll a as an indicator for estimating phytoplankton biomass and primary production and also for identifying carotenoids to determine phytoplankton composition. However, tissue grinding procedure requires a lot of time and experience in the analysis of multiple sample. Accordingly, we measured the concentrations of photosynthetic pigments before and after the grinding, in order to understand the grinding effects on the quantitative analysis of chlorophylls and carotenoids using samples from southwestern East Sea. When tissue grinding procedure was omitted, we found that Chl a concentrations were underestimated up to 45% in average. Also, concentrations of Zeaxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, biomarkers of pico and nano-size phytoplankton, were underestimated up to maximum 77~85% without grinding. We found that the smaller the phytoplankton, the bigger underestimation of their biomarker pigments concentration is likely to happen due to the incomplete extraction. Thus, tissue grinding procedure should be included for HPLC analysis in all cases, to prevent the underestimation of not only Chl a but also carotenoids pigments.

인공위성 해색센서에서 관측한 동해의 식물플랑크톤 색소농도의 시공간적 변동

  • 김상우
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.198-199
    • /
    • 2001
  • 식물플랑크톤의 증식에 영향을 미치는 요인 중에서 온대해역에서 가장 현저한 것은 수주의 연직혼합의 깊이이다. 식물플랑크틀이 물의 혼합에 의하여 연직적으로 아래에 이송되어, 그 깊이까지의 수주내의 전광합성량과 전호흡량(일차 생산자)이 같아질 때의 깊이를 Critical depth(CRD)라고 한다. CRD의 개념은 Gran and Braarud (1935)에 의해 제창되었고, Sverdrup(1953)에 의하여 수치모델로서 발전했다. (중략)

  • PDF