• Title/Summary/Keyword: 식물정화공정

Search Result 11, Processing Time 0.028 seconds

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site (금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 2019
  • Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.

유류오염토양 정화를 위한 Phytoremediation 이용에 관한 연구

  • 심지현;이준규;장윤영;심상규;황경엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.146-150
    • /
    • 1998
  • 현재 세계적인 토양환경복원의 추세는 단기간의 높은 처리효율을 기대하는 장치위주의 복원기술적용에서 좀 더 처리시간은 걸리나 저비용의 효율적인 처리기술선택으로 옮겨가고 있다. 이는 지금까지 무리한 투자에서 발생한 부작용을 최소화하기 위해서 취해지고 있는 변화로 식물을 이용한 환경복원기술(phytoremediation)은 이러한 변화에 가장 잘 부응하는 발전 가능성이 매우 높은 미래 복원기술 가운데 하나이다. 이에 본 연구에서는 phytoremediation을 이용하여 디젤로 오염된 토양을 복원하고자 하였다. 먼저 대상오염물에 대한 정화능을 나타내는 식물을 선별하기 위해 알팔파, 옥수수, 피, 물피의 오염농도별 생장 률을 살핀 결과 알팔파가 오염농도에 따른 성장저해를 가장 덜 받는 것으로 나타났다. 이에 알팔파의 발아 test를 거친 후 실제상황을 모사하기 위한 column test를 실시하여 디젤의 제거효율을 살펴보았다. 1)외부로부터 pipe line을 따라 공기를 주입하여 산소를 보충한 처리구와 2)알팔파를 심은 처리구, 3)알팔파와 공기를 넣어준 처리구를 설계하여 디젤의 제거과정을 알아본 결과 제거효과가 가장 높은 처리구는 공기와 알팔파를 함께 넣어준 처리구였다. 이를 통해 유류로 오염된 토양에서 산소가 미생물활동에 커다란 제한요인이라는 것과 공정에 공기주입구를 장착함으로써 식물만으로 처리할 때 대두되는 시간적 제약의 문제를 다소 경감시킬 수 있음이 밝혀져 앞으로 이의 활용가능성이 주목된다.

  • PDF

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

Studies on the tolerance of Halophyte Arabis stelleri under heavy metals and Salt stress condition (염생식물 섬갯장대(Arabis stelleri var. japonica)의 중금속 및 고염 농도 스트레스 상태에서 내성 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.373-378
    • /
    • 2019
  • In the marine area, the salt concentration in the soil increases, and the inland heavy metal pollution increases the damage of plants. In the inland industrial development area, researches on the genetic resources of plants together with the heavy metal accumulation of Co, Ni, Zn, and so on are required. Both of these problems have caused scientists to work hard to find plants that are likely to cause stress in plant roots. In this study, seeds of Arabis stelleri var. japonica collected near the shore were used for germination. The growth and development and tolerance of both Arabis and Arabidopsis seeds were investigated under laboratory culture conditions. As a result, Arabis showed resistance about 3 times in 250 mM nickle and cobalt, and more than 4 times in 1 mM zinc when compared to Arabidopsis. The tolerance of Arabis to Na salts increased by 20% or more at 50 mM concentration and Arabis was resistant to heavy metals and salt concentration. The accumulation of Na ions in the body was measured as a preparation for studying the intracellular mechanism. As a result, it showed a further decrease in resistance to ground water roots. It is considered that the activity of the exporting gene is important rather than the mechanism of accumulation.

Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System (자연현상을 이용한 질산화-탈질공정에 의한 하수처리장 유출수의 질소제거)

  • Kim, Young-Chul;Chung, Paul-Gene;An, Ik-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • In this paper, performance of a hybrid sequential aerobic-anaerobic natural system was investigated. Continuous aerobic and anoxic conditions were created by alternatively placing waste stabilization pond (WSP) and wale. hyacinth pond (WHP). Two pilot-scale treatment lines were built and operated; The first consists of WSP integrated with WHP and the second of WSP connected with Dark Pond(DP), namely control system ponds which were used to examine the effects of water hyacinth on nitrification and de-nitrification. The overall performance in nitrogen was 86% reduction in WSP-WHP and 36% in WSP-control pond system. Nitrogen was mostly removed by nitrification and de-nitrification which simultaneously occurred in the same water hyacinth ponds. For the de-nitrification, benthic layer was found out to be adequate support as a carbon source. In addition, WSP-WHP system was very effective in reducing phosphorus. Overall P removal efficiency in WSP-WHP is 81%, while it is only 16% in WSP-control. difference in phosphorus reduction between those two systems is thought to be caused by the plants and probably their roots producing extra-cellular materials, but these aspects need to be further studied.

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

A Study on the Removal of Organics and Nutrients in the Process Using Attached Biomass and Aquatic Floating Plants (부착미생물과 부유수생식물을 이용한 공정에서 유기물 및 영양염류 제거에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • This study was accomplished using Anaerobic/Anoxic/Oxic biofilm reactors with fixed media and post-treatment reactor for natural purification with aquatic floating plants. The objectives of this study was to investigate the characteristics of organics, nitrogen and phosphorus removal from sewage with the HRT. The average removal efficiency of SS and $COD_{Cr}$ increases as increasing the hydraulic retention time (HRT) until 12 hr of the HRT, and it was constant over 12 hr of the HRT. The removal efficiency of them was about 93% and 89% respectively over the 12 hr of HRT. The average $BOD_5$ and $COD_{Mn}$ increases as increasing the HRT and the removal efficiency of them was 84.91 % and 76.03% respectively at the 26 hr of HRT. The removal efficiency of T-N and T-P increases as increasing the HRT until 61 hr of the HRT, and it was constant over 61 hr of the HRT. At the HRT of 61 hr, it was 70.20%, 77.86% respectively. It was found that the optimum HRT was 61 hr in case of the nutrients. Before and after experiment, the nitrogen content was similar in leaves of the water hyacinths but the nitrogen content in roots after experiment was 5.5% more than its content before experiment. It was known that the nitrogen was absorbed by the water hyacinths.

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.