• Title/Summary/Keyword: 식물성 폴리우레탄

Search Result 7, Processing Time 0.018 seconds

Examination of River Restoration Technology using Non-toxic materials as Plant-based Polyurethane (식물성 폴리우레탄 계열의 무독성 소재활용을 이용한 하천 복원기술 검토)

  • Lee, Sang-Hoon;Ahn, Hong-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.259-259
    • /
    • 2017
  • 국내 하천에는 하천을 가로지르는 보나 낙차공과 같은 횡단구조물이 약 5만여개에 달하고 있다. 이러한 횡단구조물은 작업의 용이성 및 높은 강도로 인해 오랜 시간 콘크리트 소재로 사용되어 왔다. 기존 콘크리트 소재의 공법은 설치되어 있는 한 세굴 방지에 좋은 효과를 발휘한다는 장점이 있지만 포설된 공법은 시간이 지남에 따라 마모되거나 소실되는 문제가 발생되며, 최종적으로 하천횡단구조물의 안전성 및 심미성에도 영향을 미치게 된다. 이와 더불어 최근 기후변화로 인해 강우량의 증대 및 집중호우 등의 돌변하는 하천환경변화에 대한 적용 가능한 기술이 미비한 실정이다. 이러한 문제와 더불어 환경에 대한 관심이 높아짐에 따라 자연친화적 하천 및 생태복원 하천에 대한 하천 수질 및 생태학적 건강성에 대한 연구의 관심이 높아지고 있다. 최근 연구결과에 따르면 콘크리트 소재를 활용하여 횡단구조물을 설치할 경우, 콘크리트 소재의 문제점으로 제기되는 납, 크롬 등과 같은 중금속 용출과 석회석으로부터 유출되는 강염기성 물질로 인한 하천의 수질악화와 수생 생물이 독성환경에 노출되어 다양한 환경 생태학적 문제를 발생시킬 수 있다고 보고되어 있다. 본 연구에서는 콘크리트 소재의 대안으로 무 저독성 소재인 식물성 폴리우레탄을 이용하여 연구를 수행하였다. 기초 조사를 통해 콘크리트 소재의 대안으로 사용가능성을 확인하기 위하여 식물성 폴리우레탄의 물리적 강도를 확인하였으며, 환경에 미치는 영향을 파악하기 위하여 대한 생태학적 건강성을 확인하였다. 품질 특성은 바인딩강도, 내구성, 압축강도, 휨강도, 투수계수 등을 확인하였으며, 생태학적 건강성을 확인하기 위하여 양서 파충류의 독성 실험, 어류 독성평가, 부착조류에 대한 실험을 수행하였다. 이러한 결과를 바탕으로 시범지역인 대청천 일부 구간에 대하여 계절별 물리/화학/생물(식생, 어류, 저서동물)에 대한 모니터링을 수행하였다. 또한 홍수 전 후의 하상변동을 통해 개발기술의 안전성을 확인하였다.

  • PDF

A Study on the Bio-Based Polyurethane (바이오 폴리우레탄에 관한 연구)

  • Ko, Jong-Sung;Lee, Jin-Hui;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.531-542
    • /
    • 2012
  • The thesis covers the trend of research on bio-based polyurethane which is made from polyols derived mainly from plant oils and isocyanates. Castor oil is a triglyceride of ricinoleic acid containing hydroxyl group. Hydroxylation is done on the unsaturated bonds of the oils by the reactions of epoxidation/ring opening, hydroformylation/hydrogenation, ozonolysis/hydrogenation, and thiol-ene reaction. Polyols from hyperbranch, primary alcohol, polysaccharide have been studied to control the reactivity of the polyol and morphology of the microdomains. Besides, researches cover biodegradable polylactic acid polyol for medical use, fatty acid dimer polyol for the prevention of hydrolysis, and polyol with ionic group for water-borne polyurethane. Bio-based polyurethanes are being used in flexible and rigid foams, coatings, sealants, and elastomers.

Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass (바이오매스 자원을 활용한 바이오폴리올, 바이오이소시아네이트 및 바이오폴리우레탄 제조)

  • Jo, Yoon Ju;Choi, Sung Hee;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.579-586
    • /
    • 2013
  • The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used polymers in automobile, construction and chemical industries. Two monomers for the polymerization of polyurethane, polyols and isocyanates, can be produced from renewable biomass such as plant oil, cellulose, lignin and etc. Biopolyol production from plant oil has already been implemented in commercial-scale production. In this paper, recent progresses on bio-based approaches on the production of biopolyols, bio-isocyanates and bio-substituent or isocyanate from bio-feedstock are reviewed alongside polymerization and characterization of biopolyurethane for industrial applications.

Effects of Concrete Materials for the Stream Restoration on Bombina orientalis Embryos (하천복원용 콘크리트 소재가 무당개구리 (Bombina orientalis) 배아에 미치는 영향)

  • Park, Chan Jin;Ahn, Hong Kyu;Gye, Myung Chan;Lee, Tae Hyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 2015
  • Various adverse effects can occur due to direct exposure from toxic substances when toxic materials are used to restore river ecosystems. Thus, this study performed analysis on the development of toxicity in terms of survival and abnormality rates using embryos of Bombina orientalis living in Korea to analyze the toxicity of materials used in the river projects. The results showed that the toxicity in cement (C group) was the strongest whereas the toxicity in plant-based polyurethane (P1 group) was the weakest. Survival rates of B. orientalis embryos were 100%, 94 - 95%, 66 - 89% and 0% in control, P1, polyurethane (P2) and C groups, respectively. Abnormalities of embryos were 10.5%, 5.3 - 10.5%, 26.3 - 27.8% and 35.7% in control, P1, P2 and C groups, respectively. Furthermore, we verified that having a sufficient curing time reduced toxic substances that were extracted. The above result suggest that cement and polyurethane hamper the early development of amphibians. In conclusion, it is highly important to review biological safety with respect to the selection of materials used to restore rivers. This study shows the importance of the selection of eco-friendly materials and processes.

Mechanical Properties on Vegetable Oil based eco-friendly Stainless Steel Coatings (식물성오일 기반의 친환경 스테인레스 스틸 코팅에 대한 기계적 특성)

  • Kim, Ki-Jun;Sung, Wan-Mo;Kim, Joo-Han;Jung, Hyung-Hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.851-856
    • /
    • 2017
  • The mechanical properties of coating resin on stainless steel were measured by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly coating resin, we have synthesized the solvent-free coating resin to be coating on metals such as stainless steel. The properties of the synthesized coating resin to be contained polyols, MDI, silicone surfactant, fillers and vegetable oil(castor oil), that they have highly stronger in intensity and longer durability than general coating resin of polyurethane resin on stainless steel. The rigid segments of polyurethane in mechanical properties of coatings were due to unsaturated vegetable oil and the increase mole % of [NCO/OH]. In conclusion, the coating microstructure with castor oil can be good material for coatings of anticorrosion of metal substrates such as stainless steel.

Study on the Physical Properties of Polyurethane Foam Synthesized by Castor Oil Based Polyol (피마자유 기반 폴리올에 따른 폴리우레탄 폼의 물성 변화 연구)

  • Lee, Sunghyun;Kim, Kwangin;Oh, Jeongseok;Yun, Mijung;Kim, Sangbum
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.66-75
    • /
    • 2012
  • Polyurethane foams were synthesized by substituting a portion of petroleum base polyether polyol with castor oil-derived polyol(COP). Contact angle tester and surface tensionmeter were used to examine the compatibility of petroleum base polyether polyol and COP. To investigate the optimum content of COP and surfactant, the content of COP has been changed from 0 wt% to 80 wt%. From the results of polyurethane foams synthesized by surfactant L-580K, DC-5950 and BF-2470, the best mechanical properties was observed when the content of COP was 30wt% and surfactant BF-2470.

Synthesis of Polyurethane Foam with Soybean Oil (콩기름을 이용한 폴리우레탄 포옴의 합성)

  • Yang, Do Hyeon;Lee, Kwang Young;Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.731-736
    • /
    • 1999
  • The polyol was synthesized from soybean oil. Soybean oil was epoxized with peracetic acid, and was reacted with methanol in a sulfuric acid catalyst. OH value of synthesized polyol was 186(mg KOH/g). The polyurethane foam was synthesized with silicon type B-8409 as a surfactant, distilled water as a blowing agent, dimethylcyclohexylamine as a catalyst, and polymeric MDI. The density, the compressive strength, the compressive modulus, and the cell structure of the synthesized foam were investigated. The foam was prepared with changing the mole ratio of MDI, and the amount of water, surfactant, and catalyst. As the MDI index was increased, the density and the compressive property of the foam were increased.

  • PDF