• Title/Summary/Keyword: 식물내 분포

Search Result 604, Processing Time 0.029 seconds

Vegetation Structure and Soil Conditions of Viburnum erosum Habitats in the Southern Region of Korea (한국남부지역 덜꿩나무 자생지의 식생구조 및 토양특성)

  • Ha, Hyeon woo;Lim, Hyo In
    • Journal of agriculture & life science
    • /
    • v.51 no.1
    • /
    • pp.57-67
    • /
    • 2017
  • We conducted this study to investigate vegetation structure and soil conditions of six Viburnum erosum Thunb.(V. erosum) populations which showed high dominance. A total of 68 woody plants were observed to distribute: 13 in tree layer; 38 in subtree layer; and 48 in shrub layer. Based on the Mean Importance Value(MIV), the dominant tree species in the V. erosum populations were as follows in order of: Acer pseudosieboldianum(Pax) Kom., Callicarpa japonica Thunb., Indigofera kirilowii Maxim. ex Palib., Lindera obtusiloba Blume, Prunus sargentii Rehder, Quercus variabilis Blume, Rhododendron mucronulatum Turcz. and Vaccinium oldhamii Miq. In paticular, the species observed in all of the study sites were Quercus serrata Murray and Styrax japonicus Siebold & Zucc. It was found that the presence of V. erosum was positively correlated with that of Albizia julibrissin Durazz. and Symplocos chinensis f. pilosa (Nakai) Ohwi, while negatively correlated with that of Platycarya strobilacea Siebold & Zucc. According to the result, means of species diversity(H'), maxim species diversity(H' max), evenness(J') and dominance(1-J') were measured at 0.887, 1.102, 0.803, and 0.196, respectively. The soil conditions properties of pH value, organic matter content, total nitrogen content, and the amount of available phosphorous indices in the study sites were 4.3, 10.6%, 0.34% and $0.68mg{\cdot}kg^{-1}$, respectively. Meanwhile, the total amount of exchangeable cations of $Ca^{2+}$, $K^+$, and $Mg^{2+}$ were $16.84cmol_c{\cdot}kg^{-1}$, $6.41cmol_c{\cdot}kg^{-1}$, and $4.26cmol_c{\cdot}kg^{-1}$, respectively. Overall, Viburnum erosum Thunb. populations tend to grow in the strongly acid soil, which has great abundance of soil organic matters, a lot of exchangeable cations, and has higher amount available phosphorous than that of nitrogen.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.