• Title/Summary/Keyword: 시.공간적 구속성

Search Result 11, Processing Time 0.033 seconds

Women's Spatial-Temporal Entrapment in Access to Urban Opportunities by Child Age (자녀 연령별 여성의 도시기회 접근성의 시.공간적 구속성에 관한 연구)

  • Kim, Hyun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.358-374
    • /
    • 2008
  • This study examines whether and how ages of child affect accessibility experiences of women and men differently. Space-time accessibility measures based on Time-geographic framework with activity-travel diary datasets in Portland Metro, US were calculated using GIS-based geocomputation, and spatial-temporal patterns of accessibility of dual-earner couples by ages of their youngest child were compared. The results are as follows. (1) Although more women than men work part-time, which would render women more spatial-temporal autonomy, accessibility levels of women are not higher than men's. It implies that there exists another constraint placed on women which largely stems from gender inequality. (2) It is distinctively women with child under age 6 of which accessibility spaces are found to be restricted doser to home compared to men. Women with no child or with child aged over 6, however, show more or less similar spatial-temporal patterns of accessibility with men's which are quite unvarying regardless of parental status and their child age. Women's accessibility experiences characterized by spatial-temporal entrapment, thus, can be seen as problems associated with gender rather than sex. (3) Intensified spatial-temporal entrapment of women with young child are associated with the significant spatial pegs shaping their accessibility spaces, which are located much closer to home compared to men's: workplaces and child's daycare centers.

Experiments for Hydraulic Stability of Levee Revetment Block (호안블록의 수리적 안정성 실험)

  • Lee, Min-Ho;Choi, Hung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1018-1022
    • /
    • 2007
  • 본 연구는 친수공간 확보에 따른 경관호안 블록의 개발과 홍수시 수리적 안정성을 가져올 수 있는 블록의 규격은 물론 블록의 형상에 따른 상호 맞물림과 블록간의 고정 등 수리적으로 안정성을 제공해 주는지를 수리모형실험을 통해서 분석하였다. 바닥 사석공에서는 아무런 맞물림이 없는 상태에서보다는 맞물림을 주었을 경우가 안정성이 크게 나왔고 그 맞물림의 량이 많은 조건으로 실험한 육각형 다이아몬드블록의 결과가 안정성이 더 크게 나왔다. 사석의 경사시공에서는 횡적구속만 주었을 경우보다는 종·횡적구속을 주었을 경우가 안정성이 크게 나와 두방향의 구속이 필요함을 보여주었다. 이러한 실험결과는 블록의 크기, 형상 및 맞물림에 따른 유속, 수심, Froude수, Shields수, 바닥전단응력, 입자 Reynolds수의 분석을 통해 얻었다.

  • PDF

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

A Nexus Study on the SEA and the Meta-urban Planning (MUP) (광역도시계획과 전략환경평가 연계방안)

  • Jung, Jong-Gwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.189-196
    • /
    • 2010
  • 광역도시계획은 전략계획, 정책계획, 지침계획의 성격을 지니는 공간계획으로 청사진 계획으로 운용되어 온 기존의 광역개발계획 및 도시기본계획과 구분된다. 광역도시계획이 정하는 사항은 도시기본계획 및 관련 하위계획에서 기본적 취지를 검토하여 집행됨으로써 이들 계획에 대하여 지침 (guideline)적 성격을 가지나, 직접적으로 개별 개발행위나 토지이용행위를 구속하지는 않는다. 행정중심복합도시 광역도시계획에 대한 전략환경평가는 국토해양부 시행지침에서 제시한 절차를 준용하되, 계획수립 여건을 고려하여 평가계획 수립, 항목과 범위 설정(scoping), 환경성평가, 보고서 작성, 보고서 검토, 모니터링 및 사후평가의 6단계로 진행하였다. 전략환경평가 시 구체적인 항목과 범위, 평가방법 등은 계획의 범위와 성격, 내용 등에 대해 대안의 비교 검토가 가능하도록 4가지 사항을 중점적으로 고려하였다. 즉, 정책목표 달성방법의 환경 적 적정성, 대안의 설정, 자원과 에너지 이용의 효율성, 계획이 지구환경에 미치는 영향 등이다. 계획의 환경성 제고를 위해 설정한 항목은 인구, 토지이용계획, 교통계획, 녹지관리 등 4가지이며, 평가과정에서 반복 및 환류를 통하여 계획과 평가간의 연계성을 도모하였다. 이 과정에서 공간구조 변화는 행정중심복합도시를 정점으로 하고 주변 연결거점을 3개로 늘려 조정하였다.

Analysis of Boundary Conditions for Activities' Relationships in Linear Scheduling Model (선형 공정계획 모델의 액티비티 관계의 경계조건 분석)

  • Ryu, Han-Guk;Kim, Tae-Hui
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Domestic leading construction companies has been establishing and performing TACT scheduling method, similar to linear scheduling model such as line of balance and repetitive schedule, and etc. in which repetitive construction works are involved like high-rise building. Linear scheduling model has been researched as a visual scheduling method presenting the work space and time information. Likewise scheduling constraints of CPM network such as finish-to-finish, start-to-start, finish-to-start, start-to-start, linear scheduling model also has the relationships constraints, namely boundary conditions, between activities. It is especially necessary to define the boundary conditions of the activities' relationships in order to apply the linear scheduling model to be compatible with the network schedule. Therefore, this research considers the boundary conditions between activities for establishing the linear scheduling model. This paper also applies the proposed boundary conditions to TACT schedule and then deduces the main considerations in order to establish and perform TACT schedule.

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.