• Title/Summary/Keyword: 시화인공습지

Search Result 22, Processing Time 0.026 seconds

Uptake Patterns of N and P by Reeds (Phragmites australis) of Newly Constructed Shihwa Tidal Freshwater Marshes (시화지구 인공습지에서 갈대에 의한 질소 및 인 흡수)

  • 노희명;최우정;이은주;윤석인;최영대
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • This study was conducted to examine the seasonal pattern of N and P uptake by reeds (Phragmites australis) planted in newly constructed Shihwa tidal freshwater marshes. Reed and soil samples were collected from the wetland periodically from June 2000 to May 2002. Reed samples were analyzed for dry weight and content of N and P Soil organic matter content and salinity were also determined. Dry matter content of reed increased during the growing season but decreased in the fall and winter. However, this seasonal pattern was not so evident in the second year. In particular, throughout the measurement period, dry matter content of reed was lowest at a site showing high soil salinity. Regression analyses between dry matter content of reed and soil EC(1:5) suggested that dry matter content per unit square meter would decrease by 1.5 kg with every 1 dS m/sup -1/ increase in soil EC(1:5). The amount of N and P assimilated by reed significantly decreased from the fall and was lowest in the spring. Net decrease in N content from reed during the fall and next spring was calculated as 34.5 and 24.6 g m/sup -2/ in the first and second years, respectively, while the corresponding P loss was 4.0 and 1.8 g m/sup -2/. Soil organic mailer content increased in the fall and winter, but decreased in the spring and summer. The results of this study suggested that the removal of N and P by reed would be considerable during the growing season but the nutrients taken up by reeds would return as detritus to the marshes in the fall and winter. Based on the results of the study, therefore, the harvest of the reed at the latter part of the growth would be recommended to prevent further water quality degradation. However, the long-term effects of reed harvest needs further study.

Primary Production and Litter Decomposition of Macrophytes in the Sihwa Constructed Wetlands (시화호 인공습지에서 수생식물의 유기물 생산과 낙엽 분해)

  • Choi, Kwangsoon;Kim, Ho Joon;Kim, Dong Sub;Cho, Kang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • To provide the information for the wetland management considering the water treatment ability of macrophytes, the growth characteristics and primary production by reed (Phragmites australis) and cattail (Typha angustifolia), and the decomposition rate of organic matter produced were investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. The shoot height of P. australis and Typha angustifolia began to increase in March, and reached its peaks in July and August (340cm and 320cm, respectively). The shoot density of P. australis ranging $100{\sim}170EA/m^2$ was higher than that of T. angustifolia (max. $78EA/m^2$). Standing biomass of P. australis ranged from $1,350{\sim}1,980gDM/m^2$, with maximal biomass in Banwol Upper Wetland. And it was larger in upper wetlands than lower wetlands. On the other hand standing biomass of T. angustifolia ($1,940gDM/m^2$) was similar to that of P. australis in Banwol Upper Wetland. Primary productivity of P. australis was in the order of Banwol Upper Wetland ($2,050gDM/m^2/yr$) > Donghwa Lower Wetland ($1,840gDM/m^2/yr$) > Banwol Lowerr Wetland ($1,570gDM/m^2/yr$) ${\fallingdotseq}$ Donghwa Lower Wetland ($1,540gDM/m^2/yr$), and that of T. angustifolia ($2,210gDM/m^2/yr$) was higher than P. australis. Annual production of organic matter produced by P. australis and T. angustifolia was 845 ton DM/yr (423 ton C/yr), and about 90% was comprised of that by P. australis. From the litter decomposition rate (k) (P. australis: leaf 0.0062/day, stem 0.0018/day; T. angustifolia: leaf 0.0031/day, stem 0.0018/day), leaf was rapid degraded compare to stem in both P. australis and T. angustifolia. The litter decomposition rate of leaf was two times rapid P. australis than T. angustifolia, whereas that of stem was same in both. Annual litter decomposition amount of P. australis than T. angustifolia was 285 ton C/yr(67.3% of organic matter produced by macrophytes), indicating that 32.7% of organic matter produced by macrophytes is accumulated in the Sihwa CW.

Primary Production by Epiphytic Algae Attached on the Reed in Constructed Wetlands for Water Treatment (수처리용 인공습지에서 갈대부착조류의 유기물생산력)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sup;Kim, Sea-Won;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.893-900
    • /
    • 2009
  • To estimate the contribution of epiphytic algae attached on reed to organic matter production in constructed wetland, primary productivity by epiphytic algae was investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. Chlorophyll a concentration of epiphytic algae was higher in the Banweol wetland (range:37~3,581 mgChl.a/$m^2$surface stem, average:655 mgChl.a/$m^2$surface stem) than the Donhwa wetland (range:87~2,093 mgChl.a/$m^2$surface stem, average:527 mgChl.a/$m^2$surface stem). In contrast, assimilation number (AN) representing photosynthetic activity was higher in the Donhwa wetland with low TN/TP ratio than the Banweol wetland. A negative correlation (r=0.46) was observed between TN/TP ratios of inflows and AN in two wetlands, implying that high photosynthetic activity of epiphytic algae may be related with low TN/TP ratio. The areal primary productivity ranged from 307 to 2,473 mgC/$m^2$/day in the Banweol wetland and from 756 to 2,096 mgC/$m^2$/day in the Donghwa wetland, showing high productivity in summer. Average primary production was lower in the Banweol wetland (1,166 mgC/$m^2$/day) than the Donghwa wetland (1,467 mgC/$m^2$/day), although the standing crop (as chlorophyll a concentration) was high in the Banweol wetland. This result may be due to the low photosynthetic activity of epiphytic algae in the Banweol wetland with high TN/TP ratio. The annual primary production (300 tonC/year) of epiphytic algae contributed 33% of the total production in the Sihwa CW. An excessive organic matter production in constructed wetland can negatively affect the efficiency of water treatment. Therefore, the role of epiphytic algae should be considered in management of constructed wetland for water treatment.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Changes of Epiphytic Algal Communities on Reed at the Shiwha Constructed Wetland in the Early Years of the Completion (시화인공습지 완공 초기에 갈대 부착조류 군집의 변화)

  • Kim, Han-Soon;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.402-412
    • /
    • 2006
  • The Shihwa constructed wetland was established to treat the severely polluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the dynamics of epiphytic algal communities on reed (Phragmites communis) planting area at 5 stations from October 2001 to June 2002. The concentration of total nitrogen and phosphorus of inlet stations from the streams were decreased after flowing through the wetland. However, the TN : TP ratios at all stations were slightly over 16 indicating that the total phosphorus may play some role as a limitation factor. Epiphytic algae on the reed were total 329 taxa which were composed of 295 species, 13 varieties, 3 forma and 18 unidentified species. The species numbers were recorded in the order of Chlorophyceae-Bacillariophyceae-Cyanophyceae-Euglenophyceae-Chrysophyceae. The relative percentage showed a seasonal variation from Cyanophyceae to Bacillariophyceae and to Chlorophyceae. The biomass of epiphytic algae measured by chlorophyll-a concentration ranged from 0.6 to $36.4\;{\mu}g\;cm^{-2}$. Dominant species were 16 taxa which were Lyngbya angusta of Cyanophyceae in the early investigation, and were changed to Stigeoclonium lubricum of Chlorophyceae, and Nitzschia palea of Bacillariophyceae etc. in the late. Species number, standing crops and chlorophyll-a concentrations of epiphytic algae showed higher values at the inlet stations than the stations after flowing through the wetland.

Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Hwang, In-Seo;Lee, Mi-Kyung;Kang, Ho;Kim, Eun-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.755-764
    • /
    • 2009
  • To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.

Dynamics of the Community of Phytoplankton and Periphytic Algae on Reed in the Shihwa Constructed Wetland (시화호 인공습지의 식물 플랑크톤과 갈대 부착조류 군집의 동태)

  • Kim, Yong-Jae;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The Shihwa constructed wetland was established for the treatment of severely polluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating dynamics of phytoplankton communities in open waters and periphytic algae on reed (Phragmites communis) planting area at 5 stations from October 2001 to July 2002. The concentration of T-N and T-P of inlet stations from the streams were decreased by flowed through the wetland. However, the TN/TP ratios at all stations were shown as a little over 16 indicating that the T-P will play some role as a limitation factor. Phytoplankton communities were identified as a total 413 taxa which were composed of 375 species, 21 varieties, 2 forma and 15 unidentified species. Standing crops of phytoplankton communities and chlorophyll-a concentrations ranged from $330{\sim}36,420\;cells/mL$ and $2.5{\sim}170.7\;{\mu}g/L$ respectively, and showed the decreasing tendency after flowing through the wetland at almost all stations. Dominant species were 14 taxa at all stations which were Euglena oblonga and Synura spinosa etc. Periphytic algae on the reed were a total 329 taxa which were composed of 295 species, 13 varieties, 3 forma and 17 unidentified species. The species numbers were recorded in order of Chlorophyceae-Bascillariophyceae-Cyanophyceae-Euglenophyceae-Chrysophyceae. The relative abundance (%) was showed a seasonal variation from Cyanophyceae to Bascillariophyceae and to Chlorophyceae. Chlorophyll-a concentrations, ie. the biomass of periphytic algae were ranged from $5.5{\sim}363.8\;mg/m^2$. Dominant species were 16 taxa which were Lyngbya angusta of Cyanophyceae in the early investigation, and were changed to Stigeoclonium lubricum of Chlorophyceae, and Nitzschia plea of Bacillariophyceae etc. in the late. Species number, standing crops and chlorophyll-a concentrations of phytoplankton and perphytic algae were shown higher values at the inlet stations than the stations after flowing through the wetland.

Performance of Shi-hwa Constructed Wetland for the treatment of severely polluted stream water (시화호 인공습지를 이용한 오염된 하천의 수질 정화)

  • Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • A prototype of 76 ha Shi-hwa constructed wetland was constructed for the first time in Korea to purify severely polluted stream water. Hydrology, vegetation(macrophyte) and water quality for Banwol and Donghwa wetland built in Shi-hwa tidal reclaimed area were monitored to evaluate the performance of the wetlands. The overall efficiency for the treatment of polluted stream water using the wetlands showed no significant improvement. The monthly average removal rates on SS, BOD, TN and TP for Banwol and Donghwa wetlands showed 66.5% and 62.8%, 14.8 and 34.3%, 33.9 and 47.1% and 20.8 and 51.6%, respectively. It is considered that three major factors, ie. wide fluctuations in inflow rate, short hydraulic retention time and small open area compared with vegetated area could have a great influence on low system efficiency.

  • PDF

Early-Year Performance of the Sihwa Constructed Wetland for Stream Water Treatment (하천수 정화를 위한 시화인공습지의 초기 수질 정화능)

  • Kwun, Soon-Kuk;Lee, Kyung-Do;Cho, Young-Hyun;Kim, Song-Bae;Cheon, Gi-Seol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.93-102
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of Sihwa reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, we monitored hydrology, macrophyte (Phragmites communis Trin,) growth, and water quality in the Banwol and Donghwa wetlands to evaluate their performance during the initial period after the completion of wetland construction, The average removal efficiency($\%$) in each wetland was relatively low compared with the performance data from the North America Wetland Treatment System Database (NADB), which mainly includes urban sewage-treatment wetlands. However, the average removal rates per unit area ($g/m^{2}/day$) were 0.72, 0.72 and 0.51 (BOD), 2,04, 2.46 and 0.70 (SS), 0.89, 0.43 and 1.09 (TN) and 0.02, 0.02 and 0.02 (TP) in the Banwol and Donghwa wetlands and NADB, respectively. The overall performance of the Banwol and Donghwa wetlands was within the expected range of the wetland system processes contributing the reduction of the pollutant load to Lake Sihwa during the initial period of wetland operation. Considering the low influent concentration, high hydraulic loading rate, and insufficient macrophyte growth since the wetland was constructed, better performance is expected if an improved operational scheme is adopted.

The Efficacy of Water Purification and Distribution of Ammonia Oxidizing Bacteria in Shihwa Constructed Wetland (시화호 인공습지의 수질정화 및 암모니아 산화균의 분포 연구)

  • Kim, Seiyoon;Kim, Misoon;Lee, Sunghee;Lim, Miyoung;Lee, Youngmin;Kim, Zhiyeol;Ko, GwangPyo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Water quality and the distribution of ammonia oxidizing bacteria were characterized in constructed wetland of Shihwa lake. Both physico-chemical parameters and fecal indicator microorganisms including total coliforms, E.coli, Enterococcus spp. were measured. In addition, denaturant gradient gel electrophoresis (DGGE) was carried out after PCR amplification of amoA gene from input, output, and wetland sites of the Banwol, Donghwa, and Samhwa stream in Shihwa lake area. Physico-chemical parameters were in proper range for typical nitrifying bacteria to grow and perform their biological activities. Average concentrations of fecal indicator microorganisms of wetland samples were lower than those of input sites. These results suggested that microbial water quality improved by the process of constructed wetland. According to phylogenetic information obtained from DGGE from study sites, distribution of nitrifying bacteria from each of input, output, and wetland were generally distinctive one another. In addition, distribution of nitrifying bacteria between Banwol and Donghwa streams showed higher similarity (52.6%) than this of Samhwa stream (15.2%). These results indicated that characteristics of ammonia oxidizing bacteria in Samhwa were unique in comparison with those of Banwol and Donghwa stream.