• Title/Summary/Keyword: 시험온도

Search Result 3,467, Processing Time 0.115 seconds

A Study of Chill-down Process in 30 tonf Turbopump-Gas Generator Coupled Tests (30톤급 터보펌프-가스발생기 연계시험에서 예냉 절차 연구)

  • Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.447-450
    • /
    • 2012
  • An analysis of chill-down process was performed for 30 tonf Turbopump-Gas generator coupled tests. The chill-down process must be fulfilled before liquid rocket engine test using cryogenic propellant. Cavitation, damage and/or combustion instability due to bubble of propellant must be eliminated by chill-down process in a test specimen, especially cryogenic pump. The analysis of test data obtained by 30 tonf TP-GG coupled tests was performed in order to be based on the test process of KSLV-II liquid propellant rocket engine which will be developed. To macroscopically understand the process of chill-down from the viewpoint of test procedure the temperatures of important part and total time of chill-down process were analyzed.

  • PDF

Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test (하나로 조사시험용 다공 원통헝 구조물의 온도해석)

  • Choi Young-Jin;Kang Young-Hwan;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2004
  • During the irradiation tests of material and fuel rod, all components of the cylindrical structure with multiple holes act like heat sources due to high gamma heat and fission heat. The objective of this study is to formulate the general solution for the temperature distribution to estimate the thermal integrity of structure during irradiation tests. For the temperature distribution analysis, the two-dimensional heat conduction theory is used. The unmerical analysis is performed by the commercial finite element analysis code, ANSYS 6.1. If the cylindrical structure with hole number would not exceed three holes, the analysis results and finite element results are good agreement together. For the structure with four holes, the discrepancy between FE results and analysis results of the structural temperature distribution is increased.

Au wire와 Ag pad간 확산현상의 가속수명시험

  • Kim, Cheol-Hui;Hwang, Sun-Mi;Song, Byeong-Seok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.49-54
    • /
    • 2011
  • 반도체 칩과 패키지는 wire로 연결되는데, 이 때 반도체의 용도에 따라 다양한 wire와 pad의 조합이 사용되며, 이 두 개의 다른 금속물질 결합부위는 IMC(Inter Metallic Compound)를 형성하게 된다. 그러나, 결함 및 오염 등에 의하여 인접재료의 원자들이 이동하는 확산(Diffusion)이 발생하게 되어 IMC가 성장하고, 두 개의 금속물질간의 확산율은 상호 다르며, 확산율은 온도에 따른 함수가 된다. Au wire와 Ag pad를 이용하여 제조한 IR 수신모듈를 대상으로 3가지 고온조건에서 가속수명시험을 실시하였고, 각 온도별 수명분포를 바탕으로 가속계수와 활성화에너지 도출 및 정상온도에서의 수명도 예측할 수 있었다.

  • PDF

A study on the temperature guidelines for weapon system test and evaluation in the Korean peninsula (무기체계의 환경시험을 위한 한반도의 온도기준 설정에 관한 연구)

  • Moon, Jayoung;Kim, DongGil;Sung, InChul;Hong, YeonWoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1593-1600
    • /
    • 2016
  • This paper suggests a temperature guidance for requirements which must be addressed in the preparation of specifications for military equipment used in land applications in the Korean peninsula. In general, the equipment should be designed to operate during all but a certain small percentage of the time. Daegu and Yangpyeong are the hottest and coldest regions by month, respectively, based on surface weather observations over 132 regions from 1904 to 2014. The 1-percent high and low temperatures for land environment in the South Korea are $38.7^{\circ}C$, and -$29.0^{\circ}C$, respectively. This paper also presents the temperature values occurring for specified frequencies of occurrence during the most severe month. Diurnal cycles associated with the hottest and coldest top one-percent temperatures, including associated solar radiation, relative humidity, and wind-speed are provided.

Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test (양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현)

  • Kim, Jang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.379-388
    • /
    • 2016
  • There are various system defects from weapons manufacturing due to the numerous production processes and various production environments. The first kind of defect is patent defects, which can be detected by visual inspection, functional testing, and existing quality control procedures during the manufacturing process. The second kind is latent defects, which cannot be detected though existing quality management approaches because of the complexity of the system and manufacturing process. To minimize the initial defect problems, environmental stress screening (ESS) is needed to detect the defects, remove them, and improve the product conditions based on the environmental stress conditions of temperature and vibration. We implemented a tool for quantitative ESS effectiveness analysis and profile design automation based on MIL-HDBK-344 and verified it using six scenarios with different temperature stress, vibration stress, and test designs.

Review of Hazard Test of Combustion Gas and Exhaust Temperature of Acrylic Fire Protection Paint (아크릴계 내화도료 연소가스의 유해성 평가와 배기온도에 대한 고찰)

  • Jeon, Soo-Min;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • A fire resistance certification needs to be obtained before fire protection paint can be used in Korea. In the case of paint, the tests for certification are fire, gas hazard and bond strength. According to the hazard test standard of combustion gas, 16 mice are sacrificed every test. Therefore, there are ethical problems for the experimenter and legal problems for the laboratory. Accordingly, many alternatives are being assessed, such as combustion gas analysis, but they have not replaced animal testing yet. With gas hazard testing, the exhaust gas temperature can be measured. The property of the initial reaction of a specific fire paint can be characterized by this temperature. The purpose of this study was to consider the improvement point for a gas hazard test through comparative analysis of the exhaust temperature and the time of death of the mice.

Test methodology of acceleration life test on feeder cable assembly (Feeder Cable Assembly의 가속수명시험법 개발)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.62-68
    • /
    • 2016
  • The feeder cable assembly is an automotive part used for telecommunication. If it malfunctions, the control and safety of the automobile can be put at risk. ALT (Accelerated Life Testing) is a testing process for products in which they are subjected to conditions (stress, strain, temperatures, etc.) in excess of their normal service parameters in an attempt to uncover faults and potential modes of failure in a short amount of time. Failure is caused by defects in the design, process, quality, or application of the part, and these defects are the underlying causes of failure or which initiate a process leading to failure. Thermal shock occurs when a thermal gradient causes different parts of an object to expand by different amounts. Thermal shock testing is performed to determine the ability of parts and components to withstand sudden changes in temperature. In this research, the main causes of failure of the feeder cable assembly were snapping, shorting and electro-pressure resistance failure. Using the Coffin-Manson model for ALT, the normal conditions were from Tmax = $80^{\circ}C$ to Tmin = $-40^{\circ}C$, the accelerated testing conditions were from Tmax = $120^{\circ}C$ to Tmin = $-60^{\circ}C$, the AF (Acceleration Factor) was 2.25 and the testing time was reduced from 1,000 cycles to 444 cycles. Using the Bxlife test, the number of samples was 5, the required life was B0.04%.10years, in the acceleration condition, 747 cycles were obtained. After the thermal shock test under different conditions, the feeder cable assembly was examined by a network analyzer and compared with the Weibull distribution modulus parameter. The results obtained showed good results in acceleration life test mode. For the same reliability rate, the testing time was decreased by a quarter using ALT.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Evaluation of Physical Properties and Long-term Stability of Expansion Materials for Emergency Repair by Temperature (긴급복구용 팽창재료의 온도에 따른 물리적 특성 및 장기 안전성 평가)

  • Park, Jeongjun;Kim, Kisung;Kang, Hyounhoi;Kim, Ju-Ho;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • In this study, the changes of the expansion and strength according to the temperature of the emergency repairing expansion material were examined by cup foaming test and uniaxial compressive strength test, and the accelerated compression creep test was carried out to confirm the long term stability. Ramp & Hold test and accelerated compressive creep test were performed to evaluate the creep performance. The short - term creep test was used to determine the initial creep strain of the expanding material. The isothermal method using time - To evaluate the long - term compressive creep performance.

The effect of pore-control on thermal shock in porous nozzle for continuous casting

  • Yun, Dong-Cheol;Jo, Yong-Ho;Jo, Mun-Gyu;Jeong, Du-Hwa;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.42.2-42.2
    • /
    • 2009
  • 연속주조공정에서 용강의 통로, 산화방지 및 유체 흐름을 용이하게 하는 역할을 하는 다공성 노즐(porous nozzle)은 용강과의 직접적인 접촉으로 인한 화학 반응 및 용강의 침투현상을 방지하기 위해 불활성 가스를 주입하여 청정강을 제조하는데 이용된다. 공정 중 노즐 막힘으로 인한 배압상승과 열충격에 의한 크랙(crack) 발생이 문제되고 있으며 신뢰성 향상 연구가 요구되고 있다. 따라서 본 연구에서는 기공크기와 기공분포가 고온안정성 및 내열충격성에 미치는 영향을 알아보고, 내구성 시험 및 고장분석을 통하여 노즐의 신뢰성 향상 방안을 고찰 하였다. 기공을 제어한 시편을 제조하여 기공분포에 따른 고온안정성을 확인하기 위해 실제 사용 조건인 용강온도($1550^{\circ}C$)와 보다 높은 온도($1700^{\circ}C$)에서 각각 고온 시험을 수행하였다. 열충격을 스트레스 인자로 한 내구성 시험을 수행한 후 고장원인을 분석하였으며 열화정도를 확인하기 위해 열처리 온도에 따른 차압 및 굽힘 강도 변화를 비교하였다. 또한 결정상 분석을 통해 온도에 대한 상변화를 확인하였고, 시편의 표면 및 파단면의 미세구조 분석을 통해 크랙 발생여부를 확인하였다. 다공성 노즐의 기공분포가 균일 할수록 고온안정성 및 내열충격성이 향상됨을 확인하였고, 이를 통해 Porous Nozzle의 열화원인으로 판단되는 기공 크기 및 분포에 따른 크랙 발생에 대해 열응력 고찰을 수행하였다.

  • PDF