• Title/Summary/Keyword: 시험망

Search Result 726, Processing Time 0.035 seconds

Design and Fabrication of a 2-Axis Waveguide Rotary Joint for a Millimeter-wave (Ka-Band) Multi-Mode Seeker with Low VSWR and Insertion Loss (낮은 정재파비와 삽입손실을 갖는 밀리미터파(Ka 밴드) 복합모드 탐색기용 2-축 도파관 로터리 조인트 설계 및 제작)

  • Song, Sung-Chan;Yoo, Sung-Ryong;Lim, Ju-Hyun;Jung, Yong-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.173-176
    • /
    • 2019
  • In this study, a Ka-band waveguide rotary joint that can be applied to a millimeter-wave seeker is designed and fabricated. The proposed rotary joint maintains a low standing-wave ratio and low-loss characteristics, and has two rotary axes designed to enable azimuth and elevation rotation. The rotary joint is designed as a ridge-waveguide-type mode converter and a ${\lambda}/4$ choke structure to match the electromagnetic wave propagation mode between the spherical and circular waveguides. A performance test using a network analyzer and a high-power transmitter to assess vibration and shock were conducted. Results showed that the rotary joint had a very low standing-wave ratio of less than the maximum of 1.19:1 and an insertion loss of less than 0.80 dB at $F_C{\pm}500MHz$.

Integrated Analytical-Numerical Approach to Compute the Energy on Rock-fall Protection Fence (해석적-수치해석적 방법을 통한 낙석방지울타리에 작용하는 에너지 분석)

  • Kim, Hee Su;Hwang, Youngcheol;Jang, Hyun-Ick;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.57-64
    • /
    • 2019
  • A man-made slope has been increased due to the construction of road. This slope lies at risk of rock falling, induced mostly by heavy rainfall. The MOLIT (Ministry of Land, Infrastructure and Transport) recommends the specific dimension of rockfall protection fence (post, wire-rope, and mesh) which should resist 48~61 kJ. However, the energy absorption capacity of each component of rockfall protection fence is not clearly presented. Hence, this study made an effort to compute the energy absorption capacity of each component in analytical and numerical method, and compared with each other.

Design of an Inductive Coupler for Broadband Powerline Communication for Real-Time Monitoring of Distribution Automation System (배전자동화시스템의 실시간 감시를 위한 광대역 전력선통신용 유도성 커플러 설계)

  • Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1618-1623
    • /
    • 2019
  • In this paper, inductive couplers realizing broadband powerline communication (PLC) are fabricated using Fe-based nanocrystalline alloy and their performance is analyzed. As a result of the field tests using the distribution automation system (DAS), the couplers achieve comparatively excellent data communication in the principal frequency band of broadband PLC although there is a difference in communication rate depending on the presence or absence of a branch. In addition, it has been confirmed that the communication speed is maintained for a real-time transmission even in a high current environment although there is a difference in the transmission rate depending on the distance. Hence, it is considered that the inductive couplers can be used as a core device to realize the intelligent power network by exploiting them for the monitoring and remote controlling of the power plant equipments for the DAS located in the inaccessible areas.

Exploration of deep learning facial motions recognition technology in college students' mental health (딥러닝의 얼굴 정서 식별 기술 활용-대학생의 심리 건강을 중심으로)

  • Li, Bo;Cho, Kyung-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.

Data quality analysis of microwave precipitation observation station and distributed specific differential phase retrieval (전파강수관측소 자료 품질분석 및 분포형 비차등위상차 산정)

  • Lim, Sanghun;Yoon, Seong Sim;Kim, Hyunjung;Cho, Yo Han;Jeong, Hyeon Gyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.204-204
    • /
    • 2020
  • 환경부는 기존 대형 강우레이더 관측망에 대한 동해안 지역 관측공백 해소와 집중호우에 의한 재해예방을 목적으로 2기의 전파강수관측소를 삼척과 울진 통고산에 구축 운영하고 있다. 본 연구에서는 삼척 및 울진 전파강수관측소 관측 자료 품질 향상을 위한 다양한 품질 분석 기법을 소개하고 그 결과를 제시한다. 설치된 전파강수관측소의 시스템 특성 중 하나인 Short/Long 펄스 신호에 따른 자료의 연속/불연속성 및 피뢰침에 의한 자료 품질, 그리고 강수에 의한 신호감쇠에 따른 유효관측거리 등을 분석하였다. 이러한 분석을 기반으로 신호보정옵셋 및 피뢰침 위치 등을 조정하여 자료 품질을 향상하였다. 또한 삼척과 울진 전파강수관측소를 대상으로 분포형 비차등위상차 산정 기술을 적용하고 그 결과를 분석하였다. 비차등위상차는 시스템 편차나 우박 등의 영향에서 자유로워 특히 전파강수관측소와 같은 X 밴드 정량강우 추정에서 중요하다. 일반적으로 비차등위상차는 차등위상차에 대한 필터링 기법으로 산출하는데, 이 방법은 약한 강수에 대해 변동성이 크며 지형에코 등에 의해 영향을 크게 받는다는 단점이 있다. 본 연구에서는 일반적인 필터링 기법에 의한 비차등위상차와 분포형 기법을 적용한 비차등위상차에 대해 비교 분석을 하였다. 전파강수관측소 강우 자료를 이용한 분포형 비차등위상차 시험적용 결과 기존 비차등위상차에 비해 정성적으로 우위를 보임을 알 수 있었다.

  • PDF

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

A Basic Experimental Study on Vibration Power Generator for A Green Traffic Network (녹색교통망을 위한 진동력 발전 기초 실험연구)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Young-Ji;Park, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.675-683
    • /
    • 2009
  • A Basic experimental study for the development of vibration-power generation system from the vibration energy of urban infrastructure, such as a railroad, highway, and bridges, was carried out to harvest electricity from moving vehicles. Starting with the proposal of vibration power generator which converts vibration energy to an electric power by using self-induction technology, the research explains the basic concept of self-induction technology and the dynamic characteristics of a ibration power generator. Also, in order to analyze the correlation of an electromotive force from vibration power generator which depends on external force and vibration speeds, many indoor experiments with various variables were achieved. Based on the experimental results, a vibration power generator system's ability were analyzed. With those results, basic data of vibration power generator system to acquire the maximum available power was confirmed.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 농도별 예측 모델 설계)

  • Kyoung-Woo Cho;Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.576-581
    • /
    • 2021
  • Compared to a low concentration, a high concentration clearly entails limitations in terms of predictive performance owing to differences in its frequency and environment of occurrence. To resolve this problem, in this study, an artificial intelligence neural network algorithm was used to classify low and high concentrations; furthermore, two prediction models trained using the characteristics of the classified concentration types were used for prediction. To this end, we constructed training datasets using weather and air pollutant data collected over a decade in the Cheonan region. We designed a DNN-based classification model to classify low and high concentrations; further, we designed low- and high-concentration prediction models to reflect characteristics by concentration type based on the low and high concentrations classified through the classification model. According to the results of the performance assessment of the prediction model by concentration type, the low- and high-concentration prediction accuracies were 90.38% and 96.37%, respectively.

Edge Detection and ROI-Based Concrete Crack Detection (Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 -)

  • Park, Heewon;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • This paper presents the application of Convolutional Neural Networks (CNNs) and Region of Interest (ROI) techniques for concrete crack analysis. Surfaces of concrete structures, such as beams, etc., are exposed to fatigue stress and cyclic loads, typically resulting in the initiation of cracks at a microscopic level on the structure's surface. Early detection enables preventative measures to mitigate potential damage and failures. Conventional manual inspections often yield subpar results, especially for large-scale infrastructure where access is challenging and detecting cracks can be difficult. This paper presents data collection, edge segmentation and ROI techniques application, and analysis of concrete cracks using Convolutional Neural Networks. This paper aims to achieve the following objectives: Firstly, achieving improved accuracy in crack detection using image-based technology compared to traditional manual inspection methods. Secondly, developing an algorithm that utilizes enhanced Sobel edge segmentation and ROI techniques. The algorithm provides automated crack detection capabilities for non-destructive testing.