• Title/Summary/Keyword: 시편준비

Search Result 175, Processing Time 0.019 seconds

Influence of application methods of one-step self-etching adhesives on microtensile bond strength (한 단계 자가 산부식 접착제의 적용 방식이 미세인장 결합강도에 미치는 효과)

  • Choi, Chul-Kyu;Son, Sung-Ae;Ha, Jin-Hee;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hun;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods: Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) The single coating, 2) The double coating, 3) Manual agitation, 4) Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results: Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions: In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

A Study on the Reaction of Al-1% Si with Ti-silicide (Al-1% Si층과 Ti-silicide층의 반응에 관한 연구)

  • Hwang, Yoo-Sang;Paek, Su-Hyon;Song, Young-Sik;Cho, Hyun-Choon;Choi, Jin-Seog;Jung, Jae-Kyoung;Kim, Young-Nam;Sim, Tae-Un;Lee, Jong-Gil;Lee, Sang-In
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.408-416
    • /
    • 1992
  • Stable TiS$i_2$was formed by RTA on single-Si and on poly-Si. Subsequently, an Al-1% Si layer with 600-nm thick was deposited on top of the TiS$i_2$, Finally, the specimens were annealed for 30min at 400-60$0^{\circ}C$in $N_2$ambient. The thermal stability of Al-1% Si/TiS$i_2$bilayer and interfacial reaction were investigated by measuring sheet resistance, Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The composition and phase of precipitates formed by the reaction of Al-1% Si with Ti-silicide were studied by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD). In the case of single-Si substrate the reaction of Al-1% Si layer with TiS$i_2$layer resulted in precipitates, consuming all TiS$i_2$layer at 55$0^{\circ}C$. On the other hand, the disappearance of TiS$i_2$on poly-Si occurred at 50$0^{\circ}C$ and more precipitates were formed by the reaction of Al-1% Si/TiS$i_2$on potty-Si substrate than those of the reaction on single-Si substrate. This phenomenon resulted from the fact that Ti-silicide formed on poly-Si was more unstable than on single-Si by the effect of grain boundary. By EDS analysis the precipitates were found tobe composed of Ti, Al, and Si. X-ray diffraction showed the phase of precipitates to be theT$i_7$A$l_5$S$i_12$ternary compound.

  • PDF

Color stability of three dimensional-printed denture teeth exposed to various colorants (다양한 색소에 대한 3D 프린팅 인공치의 색 안정성)

  • Koh, Eun-Sol;Cha, Hyun-Suk;Kim, Tae-Hyung;Ahn, Jin-Soo;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Purpose: This study evaluated color stability of Dentca 3D-printed denture teeth, in comparison to color stabilities of four conventional types of denture teeth, upon being immersed in various colorants. Materials and methods: Four types of conventional prefabricated denture teeth (Surpass, GC, Artic 6, Heraeus Kulzer, Premium 6, Heraeus Kulzer, Preference, Candulor), 3D-printed denture teeth (Dentca); and Z250 (Filtek Z250, 3M ESPE) were prepared for testing. The samples were immersed in erythrosine 3%, coffee, cola, and distilled water (DW) at 37℃. Color change (ΔE) was measured by spectrophotometer before immersion and at 7, 14, and 21 days after immersion. One-way analysis of variance was performed along with Tukey's honestly significant difference multiple comparisons test (P<.05). Results: No great difference was observed between the color change of Dentca denture teeth and that of conventional denture teeth in most cases (P>.05). The color change of Dentca denture teeth immersed in erythrosine 3% was greater than that of Surpass (ΔE = 0.67 ± 0.25) after 1 week; Artic 6 (ΔE = 1.44 ± 0.38) and Premium 6 (ΔE = 1.69 ± 0.35) after 2 weeks; and Surpass (ΔE = 1.79 ± 0.49), Artic 6 (ΔE = 2.07 ± 0.21), Premium 6 (ΔE = 2.03 ± 0.75), and Preference (ΔE = 2.01 ± 0.75) after 3 weeks (P<.05). Conclusion: A color change was observed in Dentca denture teeth when immersed in some colorants; however, the maximum value of ΔE for Dentca denture teeth was within the clinically acceptable range.

pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates (Premixed MTA제재의 pH, 이온 유리 정도, 용해도)

  • Seolah, Back;YuJi, Jang;Junghwan, Lee;Joonhaeng, Lee;Jisun, Shin;Jongbin, Kim;Miran, Han;JongSoo, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.379-391
    • /
    • 2022
  • The current study aimed to compare the pH, solubility value, and ion release capability of premixed mineral trioxide aggregates (MTAs) versus conventional pulp capping materials before and after setting. The following materials were used: resin-modified calcium silicate cement (TheraCal LC®, TLC), resin-modified calcium hydroxide cement (Ultra-BlendTM plus, UBP), and 2 kinds of premixed MTA (Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). The specimens of each material were prepared before and after setting and were immersed in distilled water. The materials' pH and solubility value were assessed. Next, three kinds of ion (calcium, sulfide, and strontium) released by pulp capping materials were evaluated via inductively coupled plasma atomic emission spectrometry. In the after-setting group, the pH of TLC and UBP decreased. However, the pH of the premixed MTAs increased with time. TLC released a higher concentration of strontium ion compared with the other materials. Meanwhile, EMPR released a significantly high concentration of sulfide ion (p < 0.05). In the after-setting group, the 2 kinds of premixed MTAs released a significantly higher concentration of calcium ion compared with the other materials (p < 0.05). In the after-setting group, EMPR had a significantly low solubility value (p < 0.05). The Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni correction, was used in statistical analysis. In conclusion, resin-modified calcium silicate cement, modified calcium hydroxide cement, and the 2 kinds of premixed MTAs had an alkaline pH and low solubility value and they released various concentrations of ions after setting.

COMPARISON OF POLYMERIZATION SHRINKAGE AND STRAIN STRESS OF SEVERAL COMPOSITE RESINS USING STRAIN GUAGE (스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교)

  • Kim, Young-Kwang;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.516-526
    • /
    • 2004
  • Polymerization shrinkage of photoinitiation type composite resin cause several clinical problems. The purpose of this study was to evaluate the shrinkage strain stress, linear polymerization shrinkage, compressive strength and microhardness of recently developed composite resins. The composite resins were divided into four groups according to the contents of matrix and filler type. Group I : $Denfil^{TM}$(Vericom, Korea) with conventional matrix, Group II : $Charmfil^{(R)}$(Dentkist, Korea) with microfiller and nanofller mixture, Group III : $Filtek^{TM}$ Z250(3M-ESPE, USA) TEGDMA replaced by UDMA and Bis-EMA(6) in the matrix, and Group IV : $Filtek^{TM}$ Supreme(3M-ESPE, USA) using pure nanofiller. Preparation of acrylic molds were followed by filling and curing with light gun. Strain gauges were attached to each sample and the leads were connected to a strainmeter. With strainmeter shrinkage strain stress and linear polymerization shrinkage was measured for 10 minutes. The data detected at 1 minute and 10 minutes were analysed statistically with ONE-way ANOVA test. To evaluate the mechanical properties of tested materials, compressive hardness test and microhardness test were also rendered. The results can be summarized as follows : 1. Filling materials in acrylic molds showed initial temporary expansion in the early phase of polymerization. This was followed by contraction with the rapid increase in strain stress during the first 1 minute and gradually decreased during post-gel shrinkage phase. After 1 minute, there's no statistical differences of strain stress between groups. The highest strain stress was found in group IV and followed by group III, I, II at 10 minutes-measurement(p>.05). In regression analysis of strain stress, group III showed minimal inclination and followed by group II, I, IV during 1 minute. 2. In linear polymerization shrinkage test, the composite resins in every group showed initial increase of shrinkage velocity during the first 1 minute, followed by gradually decrease of shrinkage velocity. After 1 minute, group IV and group III showed statistical difference(p<.05). After 10 minutes, there were statistical differences between group IV and group I, III(p<.05) and between group II and group III(p<.05). In regression analysis of linear polymerization shrinkage, group II showed minimal inclination and followed by group IV, III, I during 1 minute. 3. In compressive strength test, group III showed the highest strength and followed by group II, IV, I. There were statistical differences between group III and group IV, I(p<.05). 4. In microhardness test, upper surfaces showed higher value than lower surfaces in every group(p<.05).

  • PDF