Annual Conference on Human and Language Technology
/
2019.10a
/
pp.287-292
/
2019
다양한 매체를 통해 텍스트 데이터가 빠르게 생성되면서 요약된 텍스트에 대한 수요가 증가하고 있다. 시퀀스-투-시퀀스 모델의 등장과 attention 기법의 출현은 추상적 요약의 난도를 낮추고 성능을 상승시켰다. 그러나 그동안 진행되어 온 attention 기반의 시퀀스-투-시퀀스 모델을 통한 요약 관련 연구들은 요약 시 텍스트의 카테고리 정보를 이용하지 않았다. 텍스트의 카테고리 정보는 Class Activation Map(CAM)을 통해 얻을 수 있는데, 텍스트를 요약할 때 핵심이 되는 단어와 CAM에서 높은 수치를 보이는 단어가 상당수 일치한다는 사실은 요약문 생성이 텍스트의 카테고리에 의존적일 필요가 있음을 증명한다. 본 논문에서는 요약문 생성 시 집중 정도에 대한 정보를 CAM을 통해 전달하여 attention matrix를 보강할 수 있는 모델을 제안하였다. 해당 모델을 사용하여 요약문을 생성하고 대표적인 요약 성능 지표인 ROUGE로 측정한 결과, attention 기반의 시퀀스-투-시퀀스 모델이 질이 떨어지는 요약문을 생성할 때 attention의 성능을 보강하여 요약문의 질을 높일 수 있음을 알 수 있었다.
Ryu, Jae-Hyun;Noh, Yunseok;Choi, Su Jeong;Park, Se-Young
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.120-125
/
2018
문서 요약 문제는 최근 심층 신경망을 활용하여 활발히 연구되고 있는 문제 중 하나이다. 많은 기존 연구들이 주로 시퀀스-투-시퀀스 모델을 활용하여 요약을 수행하고 있으나, 아직 양질의 요약을 생성하기에는 많은 문제점이 있다. 시퀀스-투-시퀀스 모델을 활용한 요약에서 가장 빈번히 나타나는 문제 중 하나는 요약문의 생성과정에서 단어나 구, 문장이 불필요하게 반복적으로 생성되는 것이다. 이를 해결하기 위해 다양한 연구가 이루어지고 있으며, 이들 대부분은 요약문의 생성 과정에서 정확한 정보를 주기 위해 모델에 여러 모듈을 추가하였다. 하지만 기존 연구들은 생성 단어가 정답 단어로 나올 확률을 최대화 하도록 학습되기 때문에, 생성하지 말아야 하는 단어에 대한 학습이 부족하여 반복 생성 문제를 해결하는 것에는 한계가 있다. 따라서 본 논문에서는 기존 요약 모델의 복잡도를 높이지 않고, 단어 생성 이력을 직접적으로 이용하여 반복 생성을 제어하는 모델을 제안한다. 제안한 모델은 학습할 때 생성 단계에서 이전에 생성한 단어가 이후에 다시 생성될 확률을 최소화하여 실제 모델이 생성한 단어가 반복 생성될 확률을 직접적으로 제어한다. 한국어 데이터를 이용하여 제안한 방법을 통해 요약문을 생성한 결과, 비교모델보다 단어 반복이 크게 줄어들어 양질의 요약을 생성하는 것을 확인할 수 있었다.
Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.29-34
/
2017
챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.
Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.29-34
/
2017
챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.141-146
/
2018
최근 대화 모델 학습에는 시퀀스-투-시퀀스 모델이 널리 활용되고 있다. 하지만 기본적인 시퀀스-투-시퀀스 모델로 학습한 대화 모델은 I don't know 문제와 사오정 문제를 내포한다. I don't know 문제는 입력 발화에 대해 안전하고 무미건조한 단편적인 대답을 많이 생성하는 문제이다. 사오정 문제는 입력 발화에 대해 적절한 응답을 생성했지만 입력 발화와 동일한 의미를 지니지만 어순, 어미 등의 변화가 있는 발화에는 적절한 응답을 생성하지 못하는 문제이다. 이전 연구에서 디노이징 메커니즘을 활용하여 각각의 문제를 완화하는 대화 모델들을 학습할 수 있음을 보였으나 하나의 모델에서 두 문제를 동시에 해결하지는 못하였다. 본 논문에서는 디노이징 메커니즘을 활용하여 각각의 문제에 강점을 지닌 디코더들을 학습하고 응답 생성 시 입력 발화에 따라 두 디코더를 적절하게 반영하여 언급한 문제 모두에 대해 강건한 응답을 생성할 수 있는 모델을 제안한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 단일 문제를 해결하는 모델들과 비교하여 ROUGE F1 점수와 사람이 평가한 정성 평가에서 성능 향상을 보였다.
Smart phone users prefer fast reading and texting. Hence, users frequently use abbreviated sequences of words and phrases. Nowadays, abbreviations are widely used from chat terms to technical terms. Therefore, gathering abbreviations would be helpful to many services, including information retrieval, recommendation system, and so on. However, manually gathering abbreviations needs to much effort and cost. This is because new abbreviations are continuously generated whenever a new material such as a TV program or a phenomenon is made. Thus it is required to generate of abbreviations automatically. To generate Korean abbreviations, the existing methods use the rule-based approach. The rule-based approach has limitations, in that it is unable to generate irregular abbreviations. Another problem is to decide the correct abbreviation among candidate abbreviations generated rules. To address the limitations, we propose a method of generating Korean abbreviations automatically using sequence-to-sequence learning in this paper. The sequence-to-sequence learning can generate irregular abbreviation and does not lead to the problem of deciding correct abbreviation among candidate abbreviations. Accordingly, it is suitable for generating Korean abbreviations. To evaluate the proposed method, we use dataset of two type. As experimental results, we prove that our method is effective for irregular abbreviations.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.517-519
/
2022
In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.125-132
/
2022
Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.
The information of contrast media concentration on target organ is very important to get reduce the side effect and high contrast imaging. We investigated alternation of signal intensity as a function of the modality of Gd-based contrast media on spin echo and ultra short time echo (UTE) of T1 effective pulse sequence at 3T MRI unit. Gadoxetic acid, which is a MRI T1 contrast medium, was used to manufacture an agarose phantom diluted in various molarities, and sterile water and agarose 2% were used as the buffer solution for the dilution. The gold standard T1 calculation was based on coronal single section imaging of the phantom mid-point with 2D Inversion recovery spine-echo pulse sequence MR imaging for testing of phantom accuracy. The 1-2mmol/L and 7mmol/L was shown the maximum signal intensity on spin echo and UTE respectively. We confirm the difference of contrast media concentration which was shown the maximum signal intensity depending on the T1 effective pulse sequence.
An end-to-end speech recognition model consisting of a single integrated neural network model was recently proposed. The end-to-end model does not need several training steps, and its structure is easy to understand. However, it is difficult to understand how the model recognizes speech internally. In this paper, we visualized and analyzed the attention-based end-to-end model to elucidate its internal mechanisms. We compared the acoustic model of the BLSTM-HMM hybrid model with the encoder of the end-to-end model, and visualized them using t-SNE to examine the difference between neural network layers. As a result, we were able to delineate the difference between the acoustic model and the end-to-end model encoder. Additionally, we analyzed the decoder of the end-to-end model from a language model perspective. Finally, we found that improving end-to-end model decoder is necessary to yield higher performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.