• Title/Summary/Keyword: 시퀀스-투-시퀀스

Search Result 16, Processing Time 0.024 seconds

Category-wise Neural Summarizer with Class Activation Map (클래스 활성화 맵을 이용한 카테고리 의존적 요약)

  • Kim, So-Eon;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.287-292
    • /
    • 2019
  • 다양한 매체를 통해 텍스트 데이터가 빠르게 생성되면서 요약된 텍스트에 대한 수요가 증가하고 있다. 시퀀스-투-시퀀스 모델의 등장과 attention 기법의 출현은 추상적 요약의 난도를 낮추고 성능을 상승시켰다. 그러나 그동안 진행되어 온 attention 기반의 시퀀스-투-시퀀스 모델을 통한 요약 관련 연구들은 요약 시 텍스트의 카테고리 정보를 이용하지 않았다. 텍스트의 카테고리 정보는 Class Activation Map(CAM)을 통해 얻을 수 있는데, 텍스트를 요약할 때 핵심이 되는 단어와 CAM에서 높은 수치를 보이는 단어가 상당수 일치한다는 사실은 요약문 생성이 텍스트의 카테고리에 의존적일 필요가 있음을 증명한다. 본 논문에서는 요약문 생성 시 집중 정도에 대한 정보를 CAM을 통해 전달하여 attention matrix를 보강할 수 있는 모델을 제안하였다. 해당 모델을 사용하여 요약문을 생성하고 대표적인 요약 성능 지표인 ROUGE로 측정한 결과, attention 기반의 시퀀스-투-시퀀스 모델이 질이 떨어지는 요약문을 생성할 때 attention의 성능을 보강하여 요약문의 질을 높일 수 있음을 알 수 있었다.

  • PDF

Reduce Redundant Repetition Using Decoding History for Sequence-to-Sequence Summarization (단어 생성 이력을 이용한 시퀀스-투-시퀀스 요약의 어휘 반복 문제 해결)

  • Ryu, Jae-Hyun;Noh, Yunseok;Choi, Su Jeong;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.120-125
    • /
    • 2018
  • 문서 요약 문제는 최근 심층 신경망을 활용하여 활발히 연구되고 있는 문제 중 하나이다. 많은 기존 연구들이 주로 시퀀스-투-시퀀스 모델을 활용하여 요약을 수행하고 있으나, 아직 양질의 요약을 생성하기에는 많은 문제점이 있다. 시퀀스-투-시퀀스 모델을 활용한 요약에서 가장 빈번히 나타나는 문제 중 하나는 요약문의 생성과정에서 단어나 구, 문장이 불필요하게 반복적으로 생성되는 것이다. 이를 해결하기 위해 다양한 연구가 이루어지고 있으며, 이들 대부분은 요약문의 생성 과정에서 정확한 정보를 주기 위해 모델에 여러 모듈을 추가하였다. 하지만 기존 연구들은 생성 단어가 정답 단어로 나올 확률을 최대화 하도록 학습되기 때문에, 생성하지 말아야 하는 단어에 대한 학습이 부족하여 반복 생성 문제를 해결하는 것에는 한계가 있다. 따라서 본 논문에서는 기존 요약 모델의 복잡도를 높이지 않고, 단어 생성 이력을 직접적으로 이용하여 반복 생성을 제어하는 모델을 제안한다. 제안한 모델은 학습할 때 생성 단계에서 이전에 생성한 단어가 이후에 다시 생성될 확률을 최소화하여 실제 모델이 생성한 단어가 반복 생성될 확률을 직접적으로 제어한다. 한국어 데이터를 이용하여 제안한 방법을 통해 요약문을 생성한 결과, 비교모델보다 단어 반복이 크게 줄어들어 양질의 요약을 생성하는 것을 확인할 수 있었다.

  • PDF

Denoising Response Generation for Learning Korean Conversational Model (한국어 대화 모델 학습을 위한 디노이징 응답 생성)

  • Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.29-34
    • /
    • 2017
  • 챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.

  • PDF

Denoising Response Generation for Learning Korean Conversational Model (한국어 대화 모델 학습을 위한 디노이징 응답 생성)

  • Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.29-34
    • /
    • 2017
  • 챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.

  • PDF

Multi-Decoder Conversational Model for Generating Robust Response Based on Denoising Mechanism (강건한 응답 생성을 위한 디노이징 메커니즘 기반 다중 디코더 대화 모델)

  • Kim, Tae-Hyeong;Park, Seong-Bae;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.141-146
    • /
    • 2018
  • 최근 대화 모델 학습에는 시퀀스-투-시퀀스 모델이 널리 활용되고 있다. 하지만 기본적인 시퀀스-투-시퀀스 모델로 학습한 대화 모델은 I don't know 문제와 사오정 문제를 내포한다. I don't know 문제는 입력 발화에 대해 안전하고 무미건조한 단편적인 대답을 많이 생성하는 문제이다. 사오정 문제는 입력 발화에 대해 적절한 응답을 생성했지만 입력 발화와 동일한 의미를 지니지만 어순, 어미 등의 변화가 있는 발화에는 적절한 응답을 생성하지 못하는 문제이다. 이전 연구에서 디노이징 메커니즘을 활용하여 각각의 문제를 완화하는 대화 모델들을 학습할 수 있음을 보였으나 하나의 모델에서 두 문제를 동시에 해결하지는 못하였다. 본 논문에서는 디노이징 메커니즘을 활용하여 각각의 문제에 강점을 지닌 디코더들을 학습하고 응답 생성 시 입력 발화에 따라 두 디코더를 적절하게 반영하여 언급한 문제 모두에 대해 강건한 응답을 생성할 수 있는 모델을 제안한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 단일 문제를 해결하는 모델들과 비교하여 ROUGE F1 점수와 사람이 평가한 정성 평가에서 성능 향상을 보였다.

  • PDF

Korean Abbreviation Generation using Sequence to Sequence Learning (Sequence-to-sequence 학습을 이용한 한국어 약어 생성)

  • Choi, Su Jeong;Park, Seong-Bae;Kim, Kweon-Yang
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.183-187
    • /
    • 2017
  • Smart phone users prefer fast reading and texting. Hence, users frequently use abbreviated sequences of words and phrases. Nowadays, abbreviations are widely used from chat terms to technical terms. Therefore, gathering abbreviations would be helpful to many services, including information retrieval, recommendation system, and so on. However, manually gathering abbreviations needs to much effort and cost. This is because new abbreviations are continuously generated whenever a new material such as a TV program or a phenomenon is made. Thus it is required to generate of abbreviations automatically. To generate Korean abbreviations, the existing methods use the rule-based approach. The rule-based approach has limitations, in that it is unable to generate irregular abbreviations. Another problem is to decide the correct abbreviation among candidate abbreviations generated rules. To address the limitations, we propose a method of generating Korean abbreviations automatically using sequence-to-sequence learning in this paper. The sequence-to-sequence learning can generate irregular abbreviation and does not lead to the problem of deciding correct abbreviation among candidate abbreviations. Accordingly, it is suitable for generating Korean abbreviations. To evaluate the proposed method, we use dataset of two type. As experimental results, we prove that our method is effective for irregular abbreviations.

Sequence-to-Sequence based Mobile Trajectory Prediction Model in Wireless Network (무선 네트워크에서 시퀀스-투-시퀀스 기반 모바일 궤적 예측 모델)

  • Bang, Sammy Yap Xiang;Yang, Huigyu;Raza, Syed M.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.517-519
    • /
    • 2022
  • In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.

Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information (언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축)

  • Lee, Jun-Beom;Kim, So-Eon;Park, Seong-Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.

A Comparison Study of Signal Intensity of Gadolinium Contrast Media on Fast Spin echo and Ultra Short Time Echo Pulse Sequence at 3T MRI-Phantom Study (3T 자기공명영상 Fast Spin Echo (FSE)와 Ultra Short Time Echo (UTE) 펄스 시퀀스에서 가돌리늄 조영제 희석농도와 신호강도 비교 -팬텀 연구)

  • Lee, Suk-Jun;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The information of contrast media concentration on target organ is very important to get reduce the side effect and high contrast imaging. We investigated alternation of signal intensity as a function of the modality of Gd-based contrast media on spin echo and ultra short time echo (UTE) of T1 effective pulse sequence at 3T MRI unit. Gadoxetic acid, which is a MRI T1 contrast medium, was used to manufacture an agarose phantom diluted in various molarities, and sterile water and agarose 2% were used as the buffer solution for the dilution. The gold standard T1 calculation was based on coronal single section imaging of the phantom mid-point with 2D Inversion recovery spine-echo pulse sequence MR imaging for testing of phantom accuracy. The 1-2mmol/L and 7mmol/L was shown the maximum signal intensity on spin echo and UTE respectively. We confirm the difference of contrast media concentration which was shown the maximum signal intensity depending on the T1 effective pulse sequence.

Visual analysis of attention-based end-to-end speech recognition (어텐션 기반 엔드투엔드 음성인식 시각화 분석)

  • Lim, Seongmin;Goo, Jahyun;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • An end-to-end speech recognition model consisting of a single integrated neural network model was recently proposed. The end-to-end model does not need several training steps, and its structure is easy to understand. However, it is difficult to understand how the model recognizes speech internally. In this paper, we visualized and analyzed the attention-based end-to-end model to elucidate its internal mechanisms. We compared the acoustic model of the BLSTM-HMM hybrid model with the encoder of the end-to-end model, and visualized them using t-SNE to examine the difference between neural network layers. As a result, we were able to delineate the difference between the acoustic model and the end-to-end model encoder. Additionally, we analyzed the decoder of the end-to-end model from a language model perspective. Finally, we found that improving end-to-end model decoder is necessary to yield higher performance.