• Title/Summary/Keyword: 시차열 중량법

Search Result 10, Processing Time 0.028 seconds

The impact of altered chemical composition on cement hydration reactivity (변화된 화학조성이 시멘트 수화반응성에 미치는 영향)

  • Choi, Ji-Ung;Son, Joeng-Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.191-192
    • /
    • 2023
  • This study, evaluated the effect of changes in the chemical composition of cement on the hydration reaction for carbon neutrality. For this purpose, changes in the chemical bound water and heat of hydration between current cement and past cement were compared. As a result, it was found that both the chemically bound water and heat of hydration of currently used cement decreased.

  • PDF

Thermal Characteristics for Cross-Linking Polyethylene (가교 폴리 에틸렌 수지의 열적 특성 분석)

  • Song, Woo-Chang;Park, Ha-Yong;Shim, Jae-Sun;Bae, In-Su;Song, Jin-Ho;Park, Young-Jik;Kweon, Myeong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1130-1131
    • /
    • 2015
  • 팰릿 형태의 XLPE (Cross-Linking Polyethylene)를 Hot Press로 시험편을 제작하여 열분석 데이터 처리장치를 이용하여 시차 주사 열량법 (differential scanning calorimetry, DSC)과 열 중량 분석 (Thermo gravimetric analysis, TGA) 등으로 열적 특성을 분석하였다. 분석 결과, XLPE의 전이온도 피크는 $61^{\circ}C$, 용융온도에 해당하는 피크는 $102^{\circ}C$에서 나타났으며 XLPE의 TG 분석 결과 $470^{\circ}C$ 근처에서 한 번의 급격한 열중량 감소를 보였으며 $800^{\circ}C$까지 측정 후 잔류물은 완전 분해되어 거의 존재하지 않았음을 알 수 있었다.

  • PDF

The Fabrication of PVDF Organic Thin Films by Physical Vapor Deposition Method and Their Electrical Conductivity Phenomena (진공증착법을 이용한 PVDF 유기박막의 제조와 전기전도현상)

  • 임응춘;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.217-225
    • /
    • 1997
  • In this study, the PVDF organic thin film was fabricated by the physical vapor deposition method to be dry-process. The distance of heat source and substrate was 5[cm] and the temperature of substrate was 30[.deg. C], when the pressure had reached 2.0 x 10$^{-5}$ [Torr], the temperature of heat source was reached to 285[.deg. C] to heat at 6-8[.deg. C/min] rate, the shutter was opened and deposition was started. TG-DTA(Thermogravimetric-Differential Thermal Analysis) spectrum of PVDF pellets showed that endothermic peak arose at 170[.deg. C] and exothermic peak at 524[.deg. C], but that of thin PVDF film showed that endothermic peak arose at 145[.deg. C] and exothermic peak at 443[.deg C]. The current density was increased linearly with increasing voltage but increased nonlinearly with higher electric field than 250[kV/cm] and activation energy was about 0.667[eV] at the temperature of 30-90[.deg. C].

  • PDF

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process (졸겔공법을 이용한 복합상변화물질의 열성능 평가)

  • Jin, Xinghan;Haider, Muhammad Zeeshan;Park, Min-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.555-566
    • /
    • 2023
  • In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Addition Polymerization of 5-Norbornene-2-carboxylic Acid Esters Using Palladium Catalyst System: Synthesis of Monomers, Effect of Their Stereochemistry on Polymerization Behavior (Palladium 촉매를 이용한 5-Norbornene-2-carboxylic Acid Esters의 부가 중합: 단량체의 합성, 단량체의 Stereochemistry(Endo-, Exo-이성질체)가 고분자의 중합 거동에 미치는 영향)

  • Chung, Hae-Kang;Shim, Hyoug-Sub;Jeon, Seung-Ho;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.487-492
    • /
    • 2015
  • The effects of chemical structure of alkyl groups of norbornene carboxylic alkyl esters(methyl, octyl, 4-chlorobenzyl) and endo/exo ratios of norbornene monomers on activity of palladium catalyst and polymerization behavior were investigated. Norbornene ester monomers were synthesized from the reaction of 5-norborene-2-carboxylic acid and various alcohols. Polymerization catalyst, di-${\mu}$-chloro-bis(-methoxybicyclo[2,2,1]-hept-2-ene)palladium(II) (DCBMP), was synthesized according to the literature procedure and silver hexafluoroantimonate ($AgSbF_6$) was used as a conjugate anion source. Gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) were the principal techniques for polymer characterization and $^1H$ NMR spectroscopy was used for chemical structures determination of monomers and polymers. For all of the norbonene alkyl esters GPC data showed that when the amounts of endo isomers exceeded those of exo isomers decreased molecular weight polymers were obtained probably due to the decreased catalyst activity. Polymerizations were conducted by varying the monomer/catalyst mole ratios (100:1, 200:1, 300:1). When 300:1 monomer/catalyst ratio was employed it was possible to synthesize high molecular weight ($M_n=27500g/mol$), film forming polymer from exo-norbornene carboxylic acid octyl ester.

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

Fire Hazard of PP and LLDPE dust in Chemical Plant Process (석유화학플랜트에서 발생하는 PP(Poly Propylene) 및 LLDPE(Linear Low Density Poly Ethylene) 분진의 연소 위험성에 관한 연구)

  • 김정환;이창우;현성호;권경옥
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Thermal properties of PP and LLDPE dusts from chemical plant and their risks of coexisting with oxidizer were investigated by a pressure vessel. The thermal decomposition of PP and LLDPE dusts with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of PP and LLDPE dusts. Using the pressure vessel which can estimate ignition and explosion of PP and LLDPE dusts coexisting with oxidizer, a series of bursting of a rupture disc, experiments has been conducted by varying the orifice diameters the weight ratio of the sample coexisting with oxidizers and the species of oxidizer. And fire gases was measured by gas analyser ($ECOM-A^+$). According to the results of the thermal analysis of PP and LLDPE dusts, the decomposition temperature range of PP and LLDPE dusts was 200 to 350 and 300 to $500^{\circ}c$, respectively. The risk of PP and LLDPE dusts coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the weight ratio of the sample to the oxidizer were increased. In addition, the risk of PP and LLDPE dusts coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer. It is found that the risk of fire becomes high when the decomposition temperature of the sample is about same as that of oxidizer. Also, the fire gases was occurred carbon monoxide and carbon dioxide. The amount of carbon monoxide generated was found to be much higher in PP decomposition than in LLDPE due to incomplete combustion of PP which has high content of carbon in chemical compound.

  • PDF

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.