멀티미디어 서비스 시장 수요예측에 관한 연구는 매우 어려운 작업으로 세계 각국에서도 수행된 바가 매우 적다. 우리의 연구는 멀티미디어 서비스 시장에 대한 적절한 가정을 하고 예측을 하였다. 따라서 시장상황이 우리의 가정과 다를 경우 우리의 예측의 정확성은 떨어진다고 볼수 있다. 따라서 시장상황이 우리의 가정과 다를 경우 우리의 예측의 정확성은 떨어진다고 볼수 있다. 따라서 우리의 시장예측이 정확하게 맞출 것이라고 생각하지 않는다. 다만, 우리의 예측이 멀티미디어 서비스 시장의 잠재력을 이해하고 우리나라 기업들의 멀티미디어 서비스에 대한 효과적인 기술개발과 경쟁력을 높이는데 귀중한 자료로 활용할수 있을 것이라고 생각한다.
미래 예측의 방법은 기술적 특성 또는 기술적 성능으로 예측이 가능할 수 있다. 그러므로 기술예측은 경제적, 사회적 이익을 산출해 낼 수 있는 전략적 연구 분야에서 활용되고 있다. 본 연구에서는 이러한 기술적 특성으로 미래를 예측하는 방법의 연구를 통하여 미래 시장을 예측하였다. 특별한 제품의 수요 욕구에 따라 시장을 점유하는 시점의 예측을 통해 미래 예측 방법을 연구하였다. 시장수요 예측을 위하여 대표적인 계량적 분석 방법인 연평균성장률(CAGR) 모형, BASS 모형, Logistic 모형, 곰페르츠 성장모형(Gompertz Growth Curve) 등의 비교를 통해 미래시장의 수요예측 모형을 제안하였다. 본 연구는 Rogers의 혁신확산 이론을 접목하여 제품이 시장에 확산되는 시점을 예측하였다. 연구결과로 특별한 제품이 시장을 점유하기 위한 다양한 요인들의 확산 시점을 통해 특별한 상품이 미래 시장에서 성숙하는 시점을 예측할 수 있는 방법론을 개발하였다. 그러나 시장을 예측하기 위한 전문가 판단에 대한 오류를 줄이는 것은 한계점이 있다.
본 연구는 마케팅 분야에서 주로 사용되는 신제품확산모델(new product diffusion model)들이 기본적인 배스 모형(Bass model)에 기반하여 개별 소비자의 이질성(heterogeneity)을 반영하지 못하고, 제품이 시장에 출시되기 이전 단계에 시장수요를 예측하지 못하는 한계를 극복하기 위한 방법론을 제시하기 위해 진행되었다. 연구에 사용된 방법론을 살펴보면, 먼저 컨조인트(Conjoint) 분석을 통해 제품의 개별 속성들에 대한 소비자의 선호 구조를 파악하고, 이를 통해 추정된 정적(static)인 소비자 효용함수를 시장 및 기술 환경의 변화에 대한 적절한 예측자료와 결합하여 동적(dynamic)인 효용함수로 전환함으로써 시간에 따른 동적(dynamic) 시장 점유율(market share)을 예측하고, 그 결과를 신제품확산모델로부터 도출된 잠재시장(market potential) 추정치와 결합함으로써 신제품의 판매량을 예측한다. 또한 본 연구에서 제시하는 모델을 한국의 30인치 이상 대형TV 시장에 대해 실증적으로 분석하였으며, CRT TV, Projection TV, LCD TV, PDP TV에 대한 시장수요를 예측하였다. 분석 결과, 소비자들은 TV 선택시 화질과 가격에 민감한 반응을 보이는 것을 알 수 있으며, 이를 바탕으로 한 시장 예측 결과, 단기적으로는 가격 경쟁력이 있는 Projection TV가 높은 시장 점유율을 보이지만, 50인치 이상 LCD TV가 상용화될 경우, LCD TV가 다른 TV들보다 상대적으로 많은 판매량을 보일 것으로 예측되었다. 또한 TV 크기에 따른 소비자들의 선택을 살펴본 결과 50∼60인치대에 비해 40인치대 크기의 TV가 많이 판매될 것으로 예상된다.
최근 대표적 글로벌 유통기업인 미국의 아마존과 중국의 알리바바가 전 세계적으로 가장 큰 시장점유가 있으며 두 기업의 국내진입 시 국내 유통산업에 큰 영향을 미칠 것으로 예상한다. 두 기업은 온라인 기업이 오프라인 기업을 흡수 합병함으로써 새로운 가치를 창출해내는 O2O (Online to Offline) 추세가 국제적으로 진행되고 있다. 아마존과 알리바바와 같은 글로벌 유통업체들은 일본, 인도와 같은 타 국가로의 세계 진출을 적극적으로 하는 추세이다. 본 연구에서는 아마존, 알리바바와 같은 글로벌 유통업체가 세계 진출의 일환으로 국내 유통시장 진입 시, 노출된 글로벌 경쟁 속에서 국내 유통기업들의 사업전망을 예측해보고, 해당 예측에 기반하여 기업 차원의 전략적 대응방안 및 정부 차원의 정책 지원방안을 마련하는 데 그 목적이 있다. 시장 현황분석을 기반으로 하여, 미래 시장예측 방법으로써 무작위로 추출된 난수(Random Number)를 이용하여 원하는 방정식의 값을 확률적으로 구하기 위한 알고리즘(Algorithm) 및 시뮬레이션(Simulation)의 방법인 몬테카를로(Monte Carlo, MC) 방법론을 사용하여 국내 유통시장의 변화를 예측하여 본 연구를 진행하였다.
최근 금리 인하로 주식을 비롯한 다양한 금융상품에 대한 투자가 급증하고 있다. 주식 시장에서 가격은 시장의 모든 정보들이 반영된 결과로서 주식의 가격 변동을 이용하여 가격 패턴을 찾아낸 후 다양한 분석기법으로 주가 지수를 예측하는 연구들이 진행되어 왔다. 그러나 주식 시장은 기업의 내·외부 요인들의 상호관계가 주가 형성에 많은 영향을 주는 가격 결정 메카니즘으로 인해 주가의 변동을 설명할 수 없는 경우가 자주 발생하고 있다. 따라서 주식 시장 예측을 위해서는 시장 내부의 변화와 외부 사건들을 함께 반영할 수 있는 방법이 필요하다. 본 논문에서는 뉴스 기사들에 대한 감성 분석과 주가지수의 시계열 데이터를 딥러닝 예측 모델을 통해 주식 시장의 추세를 예측할 수 있는 주가지수 예측 프로그램을 제안한다.
본 연구는 다양한 위치기반 서비스에 대한 사용자의 인식수준과 시장 특성 및 규모 등의 예측을 수행하기 위한 논문이다. 따라서 본 연구에서는 실내외 연속측위에 기반한 위치기반서비스의 종류를 분류하고 해당 서비스에 대한 사용자 중심의 서비스 특성, 시장 예측을 수행하고 있다. 서비스 특성의 분석은 위치정확도와 서비스의 기능성을 중심으로 분석되었고, 시장 규모에 대한 예측은 서비스의 시장성과 성장가능성 등을 중심으로 분석되었다.
본 연구는 해외 여러 시장에서 제품을 판매하는 글로벌 기업의 입장에서 복수 시장에서 발생하는 제품 수준의 매출 이륙 시점을 예측할 수 있는 모형을 제시하였다. 이 모형을 이용하여 복수 시장 정보, 제품 속성 정보, 가격 정보, 매출 정보 중 매출 이륙 시점 예측에 유용한 설명 변수들을 규명하기 위해 국내 전자 업체가 2년 5개월간 10개국 시장에 판매한 90종류의 PDP TV, LCD TV들 월별 매출 자료들을 대상으로 실증 분석을 하였다. 분석 결과, 매출 이륙 시점 예측에 유용한 변수들을 다음과 같이 파악할 수 있었다. 첫째, 대상 제품이 표적 시장에 진출하기 이전에 진출한 타 시장에서의 매출 자료를 표적 시장에서의 대상 제품 매출 이륙 시점 예측에 이용하는 것이 가장 중요함을 실증 분석을 통해 알 수 있었다. 특히, 매출 이륙 시점 예측에 동일 제품의 타 시장 혁신 계수를 이용하는 것이 유용한 반면, 동일 제품의 타 시장 모방 계수는 예측력에 도움을 주지 못함을 알 수 있었다. 둘째, 타 제품의 표적 시장 확산 정보는 예상과 달리 대상 제품의 표적 시장에서의 매출 이륙 시점 예측에 기여하는 바는 낮음을 알 수 있었다. 셋째, 일반적 인식처럼 가격과 제품의 속성도 이륙시점의 발생 시기에 영향을 미치는 것을 알 수 있었다. 하지만 제품의 자체 가격 정보 보다 시장 평균 가격 대비 대상 제품 가격 비율이 매출 이륙 시점 예측에 보다 효과적임을 알 수 있었다. 마지막으로, 전기 누적 매출량 역시 PLC 중 초기 시점을 예측하는 상황임에도 불구하고 제품 수준의 매출 이륙 시점 예측에 중요한 변수임을 알 수 있었다. 본 연구에서 제시한 매출 이륙 시점 예측 모형은 평균치에 근거한 일반적 예측과 비교해 볼 때 높은 예측력을 보여 주었다. 본 연구에서 제시한 예측 모형을 이용할 경우 특히 예측 시점이 2기일 때 가장 높음을 알 수 있었다. 본 연구 결과가 기여하는 바를 보면 첫째, 기존 확산모형과 달리 본 연구에서는 제품의 매출 초기 시점인 매출 이륙 시점을 측정하고, 예측하는 모형을 제시하였다. 둘째, 본 연구는 글로벌 시장에서 적용 가능한 제품 수준의 매출 이륙 시점을 예측하였다. 셋째, 본 연구는 처음으로 매출 이륙 시점 예측력을 예측 시점 별로 분석하여 모형의 예측력을 이해하는 데 새로운 접근법을 제시하였다.
본 논문은 건화물시장과 탱커시장의 운임지수 예측에 관하여 머신러닝을 적용하였으며 신호분해법인 웨이블릿 분해와 EMD분해를 데이터 전처리 과정에 반영하여 시간의 영역의 정보와 주파수 영역의 정보를 모두 반영할 수 있는 운임예측모형을 구축하였다. 건화물 시장의 경우 웨이블릿으로 분해한 예측모형이 우수하였으며 탱커시장의 EMD분해로 예측한 모형이 우수하였으며 실무적으로 각 운송시장 참여자들에게 새로운 단기예측 방법론을 제시하였다. 이러한 연구는 운송시장에서 양적으로 가장 중요한 건화물 시장과 탱커시장에 대한 다양한 예측방법론을 확대하고 새로운 방법론을 제시하였다는 측면에서 중요하며, 변동성이 큰 운임시장에서 과학적인 의사결정 방법에 대한 실무적인 요구를 반영할 수 있을 뿐만 아니라 가장 빈번한 스팟거래에 합리적인 의사결정이 이뤄질 수 있는 기초가 될 것으로 기대된다.
본 연구에서는 비교적 적은 양의 시장자료를 이용하여 장기적 안정성을 갖춘 예측치를 도출할 수 있는 것으로 알려진 확산 모형을 중심으로 기존의 신상품 시장예측 방법론에 대하여 고찰하고, 과거 시장자료가 거의 존재하지 않는 정보통신 관련 품목에 대한 국내시장 예측 모형 개발 방법론을 제안하였다. 본 연구에서 제시된 방법론에 의거하여 개발될 예측 모형은 기존의 정보통신분야 전략품목 이외의 여타 관련 품목, 나아가 향후 등장하게 될 새로운 품목에 대한 예측 작업에도 적용이 가능하며, 해외 기관이 제공하는 국내시장 자료에 대한 검증 툴로서의 역할 역시 제공할 것으로 기대된다.
금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.