• Title/Summary/Keyword: 시약자동화관리

Search Result 4, Processing Time 0.018 seconds

Image and NFC based Real Time Reagent Measurement and Registration System (영상 및 NFC 기반 실시간 시약 계량 등록 시스템)

  • Lee, Keunwoo;cheong, Sangho;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.652-658
    • /
    • 2019
  • When IoT is applied to various research experiment fields such as physics, pharmacy, biology and medicine, it can increase the safety and convenience of researchers by intelligently monitoring and controlling research equipment and environment with various sensors and devices. For accurate and convenient record management and the research history and the basis but also for the reverse tracking, real-time reagent measurement and registration should be provided as a research support automation services. Currently, existing methods of reagent management are operated by computerized method, but reagent registration and management are not automated. And also record is managed manually, there are many hassles and problems such as a record error and too much time required for quantification and registration for many reagents. In this paper, we study a real time reagent measuring and registration method based on IoT to resolve the problems aforementioned, by the information of the reagent acquired by image recognition and NFC method.

The Evaluation of Radioimmunoassay kits for Insulin (Insulin 측정용 방사면역측정법 시약의 평가)

  • Shin, Yong Hwan;Kim, Yun Hyun;Lee, Il Kyu;Kim, Ji Young;Seok, Jae Dong;Shin, Suk Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose : Serum insulin levels are useful indicator which of reflecting the function of insulin secretion in pancreatic ${\beta}$ cell and diagnosis of diabetes, differentiating the cause of impaired glucose tolerance. Insulin measurement kits have shown some differences in many ways such as test methods as well as quality control. The purpose of this study was to evaluate the diagnostic performance of seven manufacturing companies commercial kits. Materials and Methods : The values of insulin measured by three manufacturing companies (Biosource, Siemens, TFB) with 59 samples in August 2009 were compared with those measured by four manufacturing companies (Immunotech, Izotope, BNIBT, Cisbio) with 68 samples in December 2011. We evaluated precision, recovery rate, dilution test and correlation of serum insulin measurement using seven manufacturing company kits. Statistical program SPSS 12.0 was used for the verification of results. Results : The coefficients variation of the precision on all seven different kits were showed within 5.0%. Recovery rate of Biosource, Siemens, TFB kits on three different levels showed 94.2~103.7%, 99.0~104.6%, 99.7~107.6% respectively. Immunotech, Izotope, BNIBT, Cisbio were 93.5~99.1%, 91.4~99.1%, 99.2~131.0%, 84.8~102.3% respectively. There was strong correlation between the measurement of insulin by Biosource kit and that by two commercial kits, Siemens (R2=0.96), TFB (R2=0.99). There was good correlation between the measurement of insulin by TFB kit and that by three commercial kits, Immunotech (R2=0.97), Izotope (R2=0.96), Cisbio (R2=0.97). In the dilution test performed with more than 200 ${\mu}IU/ml$ high concentration samples, samples with diabetes correctly was measured in all seven manufacturing kits. However, as measured with insulinoma samples TFB, Siemens, Izotope, Cisbio kits were correctly measured, but Biosource and Immunotech kits were measured 47.4 ${\mu}IU/ml$, 72.3 ${\mu}IU/ml$, respectively. Conclusion : Serum Insulin radioimmunoassay kits were showed excellent precision, correlation and good recovery rate. However, some kits were not measured correctly in the high concentration insulin values. when selecting a kit should be considered many factors that cost effectiveness, compatible for automation equipment, high performance kit, the environment for each laboratory such as reaction time and reporting time.

  • PDF

Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department (핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석)

  • Chae, Hong Joo;Cheon, Jun Hong;Lee, Sun Ho;Yoo, So Yeon;Yoo, Seon Hee;Park, Ji Hye;Lim, Soo Yeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose In in-vitro laboratories of nuclear medicine department, when the reagent lot or reagent lot changes Comparability test or parallel test is performed to determine whether the results between lots are reliable. The most commonly used standard domestic laboratories is to obtain %difference from the difference in results between two lots of reagents, and then many laboratories are set the standard to less than 20% at low concentrations and less than 10% at medium and high concentrations. If the range is deviated from the standard, the test is considered failed and it is repeated until the result falls within the standard range. In this study, several tests are selected that are performed in nuclear medicine in-vitro laboratories to analyze parallel test results and to establish criteria for customized percent difference for each test. Materials and Methods From January to November 2018, the result of parallel test for reagent lot change is analyzed for 7 items including thyroid-stimulating hormone (TSH), free thyroxine (FT4), carcinoembryonic antigen (CEA), CA-125, prostate-specific antigen (PSA), HBs-Ab and Insulin. The RIA-MAT 280 system which adopted the principle of IRMA is used for TSH, FT4, CEA, CA-125 and PSA. TECAN automated dispensing equipment and GAMMA-10 is used to measure insulin test. For the test of HBs-Ab, HAMILTON automated dispensing equipment and Cobra Gamma ray measuring instrument are used. Separate reagent, customized calibrator and quality control materials are used in this experiment. Results 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(middle concentration) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [10.0 / 4.2 / 3.9 / 0.0] C-2(high concentration) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 4.3 / 4.3 / 0.3] C-2(high concentration) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(low concentration) [9.8 / 4.2 / 3.0 / 0.0] C-2(middle concentration) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [15.4 / 7.6 / 8.2 / 0.0] C-2(middle concentration) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 3.7 / 2.7 / 0.2] C-2(high concentration) [8.9 / 4.1 / 3.6 / 0.3] 7. Insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [8.7 / 3.1 / 2.4 / 0.9] C-2(high concentration) [8.3 / 3.2 / 1.5 / 0.1] In some low concentration measurements, the percent difference is found above 10 to nearly 15 percent in result of target value calculated at a lower concentration. In addition, when the value is measured after Standard level 6, which is the highest value of reagents in the dispensing sequence, the result would have been affected by a hook effect. Overall, there was no significant difference in lot change of quality control material (p-value>0.05). Conclusion Variations between reagent lots are not large in immunoradiometric assays. It is likely that this is due to the selection of items that have relatively high detection rate in the immunoradiometric method and several remeasurements. In most test results, the difference was less than 10 percent, which was within the standard range. TSH control level 1 and PSA control level 1, which have low concentration target value, exceeded 10 percent more than twice, but it did not result in a value that was near 20 percent. As a result, it is required to perform a longer period of observation for more homogenized average results and to obtain laboratory-specific acceptance criteria for each item. Also, it is advised to study observations considering various variables.

A Comparative Study of Production of [68Ga]PSMA-11 with or without Cassette Type Modules (비 카세트 방식과 카세트 방식을 이용한 [68Ga]PSMA-11의 자동 합성 방법 비교)

  • Hyun-Sik, Park;Byeong-Min, Jo;Hyun-Ho, An;Hong-Jin, Lee;Jin-Hyeong, Lee;Gyeong-Jae, Lee;Byung-Chul, Lee;Won-Woo, Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.15-19
    • /
    • 2022
  • Purpose [68Ga]PSMA-11 is needed the high reproducibility, excellent radiochemical yield and purity. In term of radiation safety, the radiation exposure of operator for its production also should be considered. In this work, we performed a comparative study for the fully automated synthesis of [68Ga]PSMA-11 between non-cassette type and cassette type. Materials and Methods Two different type of modules (TRACERlab FX N pro for non-cassette type and BIKBox for cassette type) were used for the automated production of [68Ga]PSMA-11. According to the previously identified elution profile, Only 2.5 ml with high radioactivity was used for the reaction. After adjusting the pH of the reaction solution with HEPES buffer solution, the precursor was added and reacted with at 95 ℃ for 15 minutes. The reaction mixture was separated and purified using a C18 light cartridge. The product was eluted with 50% EtOH/saline solution and diluted with saline. It was completed by sterilizing filter. In the non-cassette type, the aforementioned process must be prepared directly. However, in the cassette method, synthesis was possible simply by installing a kit that was already completed. Results Both total [68Ga]PSMA-11 production time were 25±3(non-cassette type) and 23±3 minutes(cassette type). The radiochemical yield of the non-cassette type(65.5±5.7%) was higher than that of the cassette type(61.6±4.8%) after sterilization filter. The non-cassette type took about 120 minutes of preparation time before synthesis due to washing of synthesizer and reagent preparation. However, since the cassette type does not require washing and reagent preparation, it took about 20 minutes to prepare before synthesis. Both type of synthesizer had a radiochemical high purity(>99%). Conclusion The non-cassette type production of [68Ga]PSMA-11 showed higher radiochemical yield and lower cost than the cassette type. However, The cassette type has an advantage in terms of preparation time, convenience, and equipment maintenance.