• Title/Summary/Keyword: 시스템 활용도

Search Result 26,243, Processing Time 0.055 seconds

Development of Program for Renal Function Study with Quantification Analysis of Nuclear Medicine Image (핵의학 영상의 정량적 분석을 통한 신장기능 평가 프로그램 개발)

  • Song, Ju-Young;Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shinn, Kyung-Sub;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.89-99
    • /
    • 2001
  • Purpose: In this study, we developed a new software tool for the analysis of renal scintigraphy which can be modified more easily by a user who needs to study new clinical applications, and the appropriateness of the results from our program was studied. Materials and Methods: The analysis tool was programmed with IDL5.2 and designed for use on a personal computer running Windows. For testing the developed tool and studying the appropriateness of the calculated glomerular filtration rate (GFR), $^{99m}Tc$-DTPA was administered to 10 adults in normal condition. In order to study the appropriateness of the calculated mean transit time (MTT), $^{99m}Tc-DTPA\;and\;^{99m}Tc-MAG3$ were administered to 11 adults in normal condition and 22 kidneys were analyzed. All the images were acquired with ORBITOR. the Siemens gamma camera. Results: With the developed tool, we could show dynamic renal images and time activity curve (TAC) in each ROI and calculate clinical parameters of renal function. The results calculated by the developed tool were not different statistically from the results obtained by the Siemens application program (Tmax: p=0.68, Relative Renal Function: p:1.0, GFR: p=0.25) and the developed program proved reasonable. The MTT calculation tool proved to be reasonable by the evaluation of the influence of hydration status on MTT. Conclusion: We have obtained reasonable clinical parameters for the evaluation of renal function with the software tool developed in this study. The developed tool could prove more practical than conventional, commercial programs.

  • PDF

A Methodology for Automatic Multi-Categorization of Single-Categorized Documents (단일 카테고리 문서의 다중 카테고리 자동확장 방법론)

  • Hong, Jin-Sung;Kim, Namgyu;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.77-92
    • /
    • 2014
  • Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we propose a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. First, we attempt to find the relationship between documents and topics by using the result of topic analysis for single-categorized documents. Second, we construct a correspondence table between topics and categories by investigating the relationship between them. Finally, we calculate the matching scores for each document to multiple categories. The results imply that a document can be classified into a certain category if and only if the matching score is higher than the predefined threshold. For example, we can classify a certain document into three categories that have larger matching scores than the predefined threshold. The main contribution of our study is that our methodology can improve the applicability of traditional multi-category classifiers by generating multi-categorized documents from single-categorized documents. Additionally, we propose a module for verifying the accuracy of the proposed methodology. For performance evaluation, we performed intensive experiments with news articles. News articles are clearly categorized based on the theme, whereas the use of vulgar language and slang is smaller than other usual text document. We collected news articles from July 2012 to June 2013. The articles exhibit large variations in terms of the number of types of categories. This is because readers have different levels of interest in each category. Additionally, the result is also attributed to the differences in the frequency of the events in each category. In order to minimize the distortion of the result from the number of articles in different categories, we extracted 3,000 articles equally from each of the eight categories. Therefore, the total number of articles used in our experiments was 24,000. The eight categories were "IT Science," "Economy," "Society," "Life and Culture," "World," "Sports," "Entertainment," and "Politics." By using the news articles that we collected, we calculated the document/category correspondence scores by utilizing topic/category and document/topics correspondence scores. The document/category correspondence score can be said to indicate the degree of correspondence of each document to a certain category. As a result, we could present two additional categories for each of the 23,089 documents. Precision, recall, and F-score were revealed to be 0.605, 0.629, and 0.617 respectively when only the top 1 predicted category was evaluated, whereas they were revealed to be 0.838, 0.290, and 0.431 when the top 1 - 3 predicted categories were considered. It was very interesting to find a large variation between the scores of the eight categories on precision, recall, and F-score.

Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality (지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법)

  • Choi, Sukjae;Lee, Jungwon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.119-138
    • /
    • 2017
  • Recently, SNS has become an important channel for marketing as well as personal communication. However, cybercrime has also evolved with the development of information and communication technology, and illegal advertising is distributed to SNS in large quantity. As a result, personal information is lost and even monetary damages occur more frequently. In this study, we propose a method to analyze which sentences and documents, which have been sent to the SNS, are related to financial fraud. First of all, as a conceptual framework, we developed a matrix of conceptual characteristics of cybercriminality on SNS and emergency management. We also suggested emergency management process which consists of Pre-Cybercriminality (e.g. risk identification) and Post-Cybercriminality steps. Among those we focused on risk identification in this paper. The main process consists of data collection, preprocessing and analysis. First, we selected two words 'daechul(loan)' and 'sachae(private loan)' as seed words and collected data with this word from SNS such as twitter. The collected data are given to the two researchers to decide whether they are related to the cybercriminality, particularly financial fraud, or not. Then we selected some of them as keywords if the vocabularies are related to the nominals and symbols. With the selected keywords, we searched and collected data from web materials such as twitter, news, blog, and more than 820,000 articles collected. The collected articles were refined through preprocessing and made into learning data. The preprocessing process is divided into performing morphological analysis step, removing stop words step, and selecting valid part-of-speech step. In the morphological analysis step, a complex sentence is transformed into some morpheme units to enable mechanical analysis. In the removing stop words step, non-lexical elements such as numbers, punctuation marks, and double spaces are removed from the text. In the step of selecting valid part-of-speech, only two kinds of nouns and symbols are considered. Since nouns could refer to things, the intent of message is expressed better than the other part-of-speech. Moreover, the more illegal the text is, the more frequently symbols are used. The selected data is given 'legal' or 'illegal'. To make the selected data as learning data through the preprocessing process, it is necessary to classify whether each data is legitimate or not. The processed data is then converted into Corpus type and Document-Term Matrix. Finally, the two types of 'legal' and 'illegal' files were mixed and randomly divided into learning data set and test data set. In this study, we set the learning data as 70% and the test data as 30%. SVM was used as the discrimination algorithm. Since SVM requires gamma and cost values as the main parameters, we set gamma as 0.5 and cost as 10, based on the optimal value function. The cost is set higher than general cases. To show the feasibility of the idea proposed in this paper, we compared the proposed method with MLE (Maximum Likelihood Estimation), Term Frequency, and Collective Intelligence method. Overall accuracy and was used as the metric. As a result, the overall accuracy of the proposed method was 92.41% of illegal loan advertisement and 77.75% of illegal visit sales, which is apparently superior to that of the Term Frequency, MLE, etc. Hence, the result suggests that the proposed method is valid and usable practically. In this paper, we propose a framework for crisis management caused by abnormalities of unstructured data sources such as SNS. We hope this study will contribute to the academia by identifying what to consider when applying the SVM-like discrimination algorithm to text analysis. Moreover, the study will also contribute to the practitioners in the field of brand management and opinion mining.

X-tree Diff: An Efficient Change Detection Algorithm for Tree-structured Data (X-tree Diff: 트리 기반 데이터를 위한 효율적인 변화 탐지 알고리즘)

  • Lee, Suk-Kyoon;Kim, Dong-Ah
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.683-694
    • /
    • 2003
  • We present X-tree Diff, a change detection algorithm for tree-structured data. Our work is motivated by need to monitor massive volume of web documents and detect suspicious changes, called defacement attack on web sites. From this context, our algorithm should be very efficient in speed and use of memory space. X-tree Diff uses a special ordered labeled tree, X-tree, to represent XML/HTML documents. X-tree nodes have a special field, tMD, which stores a 128-bit hash value representing the structure and data of subtrees, so match identical subtrees form the old and new versions. During this process, X-tree Diff uses the Rule of Delaying Ambiguous Matchings, implying that it perform exact matching where a node in the old version has one-to one corrspondence with the corresponding node in the new, by delaying all the others. It drastically reduces the possibility of wrong matchings. X-tree Diff propagates such exact matchings upwards in Step 2, and obtain more matchings downwsards from roots in Step 3. In step 4, nodes to ve inserted or deleted are decided, We aldo show thst X-tree Diff runs on O(n), woere n is the number of noses in X-trees, in worst case as well as in average case, This result is even better than that of BULD Diff algorithm, which is O(n log(n)) in worst case, We experimented X-tree Diff on reat data, which are about 11,000 home pages from about 20 wev sites, instead of synthetic documets manipulated for experimented for ex[erimentation. Currently, X-treeDiff algorithm is being used in a commeercial hacking detection system, called the WIDS(Web-Document Intrusion Detection System), which is to find changes occured in registered websites, and report suspicious changes to users.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

A Study on Visual Identity of Korean Government (우리나라 행정부의 시각 정체성 연구)

  • Cho, Ju-Eun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.261-272
    • /
    • 2006
  • As we cannot think of our lives without a nation, it is closely related to almost every part of our daily lives. The role of government is becoming more important in the complex modern society as an essential element of national authority even though the government has indirect and secondary characteristics in its functional performance. Therefore, the government has to be efficient in planning and executing its policies, and it needs to be representative and fair as part of a national authoritative community. In the 21st century when symbolic and cultural importance of images are becoming more important, it is crucial for the government organizations to have an integrated identity design system that can satisfy both of these requirements of the government. However, the C.I.(Corporate Identity) of each Korean administrative branch has been developed separately and sporadically, which resulted in lack of consistency as part of the government. Shape and material of their C.I.s that follow short term design trend and popularity also lack uniqueness which can be distinguished from those of any private corporation. This may show that our government lacks systematic administrative capability, since image of a feature represents its characteristics and reality, and their recognition and evaluation from others become identity of the feature. In this perspective, the purpose of this thesis is to suggest an identity design system that has certain rules and regularity with wide variety of possible alterations for the central administration in Korea. In order to represent this visually, identity design system with both integrity and variety of possible alteration is created based on traditional Korean culture, especially the concept of Umyang-ohaeng and Samjae.

  • PDF

The Suitable Region and Site for 'Fuji' Apple Under the Projected Climate in South Korea (미래 시나리오 기후조건하에서의 사과 '후지' 품종 재배적지 탐색)

  • Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.162-173
    • /
    • 2009
  • Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.

The Evolution of Cyber Singer Viewed from the Coevolution of Man and Machine (인간과 기계의 공진화적 관점에서 바라본 사이버가수의 진화과정)

  • Kim, Dae-Woo
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.261-295
    • /
    • 2015
  • Cyber singer appeared in the late 1990s has disappeared briefly appeared. although a few attempts in the 2000s, it did not show significant successes. cyber singer was born thanks to the technical development of the IT industry and the emergence of an idol training system in the music industry. It was developed by Vocaloid 'Seeyou' starting from 'Adam'. cyber singer that differenatiated typical digital characters in a cartoon or game may be subject to idolize to the music as a medium. They also feature forming a plurality of fandom. therefore, such attempts and repeated failures, this could be considered a fashion, but it flew content creation and ongoing attempts to take advantage of the new media, such as Vocaloid can see that there are expectations for a true Cyber-born singer. Early-Cyber singer is made only resemble human appearance, but 'Sciart' and 'Seeyou' has been evolving to becoming more like the human capabilities. in this paper, stylized cyber singer had disappeared in the past in the process of developing the technology to evolve into own artificial life does not end in failure cases, gradually led to a change in public perceptions of the image look looking machine was an attempt in that sense. With the direction of the evolution of the mechanical function to obtain a human, fun and human exchanges and mutual feelings. And it is equipped with an artificial life form that evolved with it only in appearance and function. in order to support this logic, I refer to the study of the coevolution of man and machine at every Bruce Mazlish. And, I have analyzed the evolution of cyber singer Bruce research from the perspective of the development process since the late 1990s, the planning of the eight singers who have appeared and design of the cyber character and important voices to be evaluated as a singer (vocal). The machine has been evolving coevolution with humans. cyber singer ambivalent development targets are recognized, but strive to become the new artificial creatures of horror idea of human desire and death continues. therefore, the new Cyber-organisms are likely to be the same style as 'Seeyou'. because, cartoon forms and whirring voice may not be in the form of a signifier is the real human desires, but this is because the contemporary public's desire to be desired and the technical development of this type can be created at the point where the cross-signifier.

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

Attention to the Internet: The Impact of Active Information Search on Investment Decisions (인터넷 주의효과: 능동적 정보 검색이 투자 결정에 미치는 영향에 관한 연구)

  • Chang, Young Bong;Kwon, YoungOk;Cho, Wooje
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.117-129
    • /
    • 2015
  • As the Internet becomes ubiquitous, a large volume of information is posted on the Internet with exponential growth every day. Accordingly, it is not unusual that investors in stock markets gather and compile firm-specific or market-wide information through online searches. Importantly, it becomes easier for investors to acquire value-relevant information for their investment decision with the help of powerful search tools on the Internet. Our study examines whether or not the Internet helps investors assess a firm's value better by using firm-level data over long periods spanning from January 2004 to December 2013. To this end, we construct weekly-based search volume for information technology (IT) services firms on the Internet. We limit our focus to IT firms since they are often equipped with intangible assets and relatively less recognized to the public which makes them hard-to measure. To obtain the information on those firms, investors are more likely to consult the Internet and use the information to appreciate the firms more accurately and eventually improve their investment decisions. Prior studies have shown that changes in search volumes can reflect the various aspects of the complex human behaviors and forecast near-term values of economic indicators, including automobile sales, unemployment claims, and etc. Moreover, search volume of firm names or stock ticker symbols has been used as a direct proxy of individual investors' attention in financial markets since, different from indirect measures such as turnover and extreme returns, they can reveal and quantify the interest of investors in an objective way. Following this line of research, this study aims to gauge whether the information retrieved from the Internet is value relevant in assessing a firm. We also use search volume for analysis but, distinguished from prior studies, explore its impact on return comovements with market returns. Given that a firm's returns tend to comove with market returns excessively when investors are less informed about the firm, we empirically test the value of information by examining the association between Internet searches and the extent to which a firm's returns comove. Our results show that Internet searches are negatively associated with return comovements as expected. When sample is split by the size of firms, the impact of Internet searches on return comovements is shown to be greater for large firms than small ones. Interestingly, we find a greater impact of Internet searches on return comovements for years from 2009 to 2013 than earlier years possibly due to more aggressive and informative exploit of Internet searches in obtaining financial information. We also complement our analyses by examining the association between return volatility and Internet search volumes. If Internet searches capture investors' attention associated with a change in firm-specific fundamentals such as new product releases, stock splits and so on, a firm's return volatility is likely to increase while search results can provide value-relevant information to investors. Our results suggest that in general, an increase in the volume of Internet searches is not positively associated with return volatility. However, we find a positive association between Internet searches and return volatility when the sample is limited to larger firms. A stronger result from larger firms implies that investors still pay less attention to the information obtained from Internet searches for small firms while the information is value relevant in assessing stock values. However, we do find any systematic differences in the magnitude of Internet searches impact on return volatility by time periods. Taken together, our results shed new light on the value of information searched from the Internet in assessing stock values. Given the informational role of the Internet in stock markets, we believe the results would guide investors to exploit Internet search tools to be better informed, as a result improving their investment decisions.