• Title/Summary/Keyword: 시스템 설계와 구현

Search Result 11,851, Processing Time 0.043 seconds

Design of a 60 Hz Band Rejection FilterInsensitive to Component Tolerances (부품 허용 오차에 둔감한 60Hz 대역 억제 필터 설계)

  • Cheon, Jimin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • In this paper, we propose a band rejection filter (BRF) with a state variable filter (SVF) structure to effectively remove the influence of 60 Hz line frequency noise introduced into the sensor system. The conventional BRF of the SVF structure uses an additional operational amplifier (OPAMP) to add a low pass filter (LPF) output and a high pass filter (HPF) output or an input signal and a band pass filter. Therefore, the notch frequency and the notch depth that determine the signal attenuation of the BRF greatly depend on the tolerance of the resistors used to obtain the sum or difference of the signals. On the other hand, in the proposed BRF, since the BRF output is formed naturally within the SVF structure, there is no need for a combination between each port. The notch frequency of the proposed BRF is 59.99 Hz, and it can be confirmed that it is not affected at all by the tolerance of the resistor through the Monte Carlo simulation results. The notch depth also has an average of -42.54dB and a standard deviation of 0.63dB, confirming that normal operation as a BRF is possible. Also, with the proposed BRF, noise filtering was applied to the electrocardiogram (ECG) signal that interfered with 60 Hz noise, and it was confirmed that the 60 Hz noise was appropriately suppressed.

A Study on AR Algorithm Modeling for Indoor Furniture Interior Arrangement Using CNN

  • Ko, Jeong-Beom;Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.11-17
    • /
    • 2022
  • In this paper, a model that can increase the efficiency of work in arranging interior furniture by applying augmented reality technology was studied. In the existing system to which augmented reality is currently applied, there is a problem in that information is limitedly provided depending on the size and nature of the company's product when outputting the image of furniture. To solve this problem, this paper presents an AR labeling algorithm. The AR labeling algorithm extracts feature points from the captured images and builds a database including indoor location information. A method of detecting and learning the location data of furniture in an indoor space was adopted using the CNN technique. Through the learned result, it is confirmed that the error between the indoor location and the location shown by learning can be significantly reduced. In addition, a study was conducted to allow users to easily place desired furniture through augmented reality by receiving detailed information about furniture along with accurate image extraction of furniture. As a result of the study, the accuracy and loss rate of the model were found to be 99% and 0.026, indicating the significance of this study by securing reliability. The results of this study are expected to satisfy consumers' satisfaction and purchase desires by accurately arranging desired furniture indoors through the design and implementation of AR labels.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

Integrated Management Data Warehouse Development Process of Research Expenses in Enterprise Environment (엔터프라이즈 환경의 연구비 통합관리 데이터 웨어하우스 개발 프로세스)

  • Choi, Seong-Man;Yoo, Cheol-Jung;Chang, Ok-Bae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.183-194
    • /
    • 2004
  • The existing management job of research expenses has been divided into three parts: budget planning, budget draw-up, and exact settlement of budget. However, it caused some problems. Under this current circumstance it is required to obtain research expenses steadily, to operate efficiently and to use them clearly to solve such problems. As a result of a study on data warehouse development process of existing system integration company (Inmon, IBM) to reflect current trend described above, data warehouse development process of Inmon uses systematic and gradual access as a classical development cycle method. It causes overlap and feedback to the previous step in the process of each step Is requested. And another problem that it is difficult to toil what function refers and corrects data because functions and data are separated during performing development process at data warehouse development process of IBM is caused. Integrated management data warehouse development process of research expenses in the enterprise environment which applies UML at planning and analysis step, design step and implement and test step is suggested in this paper. Information retrieval agent uses existing budget plan DB, budget draw-up DB and budget settlement DB to find out information that a user wants to know. Information retrieval agent collects and saves information at integration database and information integration agent extracts, transports, transforms and loads the data. Information integration agent reduces a user's efforts to access to a number of information sources and check each of them. It also screens out data that a user may not need. As a result, integrated management data warehouse development process of research expenses in the enterprise environment reflects a user's requirements as much as possible and provides various types of information to make a decision which is needed to establish the policy of research expense management. It helps an end user approach his/her desired analysis information quickly and get various data from the comprehensive viewpoint rather than the fragmentary viewpoint. Furthermore, as it integrated three systems into one, it is possible to share data, to integrate the system, to reduce operating expenses and to simplify supporting environment for the decision making.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Ontology-based User Customized Search Service Considering User Intention (온톨로지 기반의 사용자 의도를 고려한 맞춤형 검색 서비스)

  • Kim, Sukyoung;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.129-143
    • /
    • 2012
  • Recently, the rapid progress of a number of standardized web technologies and the proliferation of web users in the world bring an explosive increase of producing and consuming information documents on the web. In addition, most companies have produced, shared, and managed a huge number of information documents that are needed to perform their businesses. They also have discretionally raked, stored and managed a number of web documents published on the web for their business. Along with this increase of information documents that should be managed in the companies, the need of a solution to locate information documents more accurately among a huge number of information sources have increased. In order to satisfy the need of accurate search, the market size of search engine solution market is becoming increasingly expended. The most important functionality among much functionality provided by search engine is to locate accurate information documents from a huge information sources. The major metric to evaluate the accuracy of search engine is relevance that consists of two measures, precision and recall. Precision is thought of as a measure of exactness, that is, what percentage of information considered as true answer are actually such, whereas recall is a measure of completeness, that is, what percentage of true answer are retrieved as such. These two measures can be used differently according to the applied domain. If we need to exhaustively search information such as patent documents and research papers, it is better to increase the recall. On the other hand, when the amount of information is small scale, it is better to increase precision. Most of existing web search engines typically uses a keyword search method that returns web documents including keywords which correspond to search words entered by a user. This method has a virtue of locating all web documents quickly, even though many search words are inputted. However, this method has a fundamental imitation of not considering search intention of a user, thereby retrieving irrelevant results as well as relevant ones. Thus, it takes additional time and effort to set relevant ones out from all results returned by a search engine. That is, keyword search method can increase recall, while it is difficult to locate web documents which a user actually want to find because it does not provide a means of understanding the intention of a user and reflecting it to a progress of searching information. Thus, this research suggests a new method of combining ontology-based search solution with core search functionalities provided by existing search engine solutions. The method enables a search engine to provide optimal search results by inferenceing the search intention of a user. To that end, we build an ontology which contains concepts and relationships among them in a specific domain. The ontology is used to inference synonyms of a set of search keywords inputted by a user, thereby making the search intention of the user reflected into the progress of searching information more actively compared to existing search engines. Based on the proposed method we implement a prototype search system and test the system in the patent domain where we experiment on searching relevant documents associated with a patent. The experiment shows that our system increases the both recall and precision in accuracy and augments the search productivity by using improved user interface that enables a user to interact with our search system effectively. In the future research, we will study a means of validating the better performance of our prototype system by comparing other search engine solution and will extend the applied domain into other domains for searching information such as portal.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

A Study on the Applicability of Social Security Platform to Smart City (사회보장플랫폼과 스마트시티에의 적용가능성에 관한 연구)

  • Jang, Bong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.321-335
    • /
    • 2020
  • Given that with the development of the 4th industry, interest and desire for smart cities are gradually increasing and related technologies are developed as a way to strengthen urban competitiveness by utilizing big data, information and communication technology, IoT, M2M, and AI, the purpose of this study is to find out how to achieve this goal on the premise of the idea of smart well fair city. In other words, the purpose is to devise a smart well-fair city in the care area, such as health care, medical care, and welfare, and see if it is feasible. With this recognition, the paper aimed to review the concept and scope of smart city, the discussions that have been made so far and the issues or limitations on its connection to social security and social welfare, and based on it, come up with the concept of welfare city. As a method of realizing the smart welfare city, the paper reviewed characteristics and features of a social security platform as well as the applicability of smart city, especially care services. Furthermore, the paper developed discussions on the standardization of the city in terms of political and institutional improvements, utilization of personal information and public data as well as ways of institutional improvement centering on social security information system. This paper highlights the importance of implementing the digitally based community care and smart welfare city that our society is seeking to achieve. With regard to the social security platform based on behavioral design and the 7 principles(6W1H method), the present paper has the limitation of dealing only with smart cities in the fields of healthcare, medicine, and welfare. Therefore, further studies are needed to investigate the effects of smart cities in other fields and to consider the application and utilization of technologies in various aspects and the corresponding impact on our society. It is expected that this paper will suggest the future course and vision not only for smart cities but also for the social security and welfare system and thereby make some contribution to improving the quality of people's lives through the requisite adjustments made in each relevant field.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.