• Title/Summary/Keyword: 시스템 구동 형태

Search Result 232, Processing Time 0.024 seconds

Nonlinear Control with Magnitude and Rate Constraints (크기 및 변화율 제한을 갖는 비선형 시스템의 제어)

  • Lee, Jung-Kook;Lee, Keum-Won;Lee, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.130-135
    • /
    • 2007
  • This paper deals with a controller design for a 2 dimensional aeroelatic model which has unknown parameters including polynomial type nonlinearity. Actually in case of state and acuator signal having magnitude, rate and bandwidth limitations, the controller can't be implemented and so in each case, a filter is used for implementation. First, error signals are defined upon the backstepping theory, and tracking error signals are also defined due to command signal and filter signals and then compensated tracking error signals are defined. Lastly, a Lyapunov function is defined for the stabilization and from this method, an adaptive law is derived. Simulations are done for the demonstrtion of the effectiveness of the algorithms.

  • PDF

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Wake-Up Receiver System Design Using the DGS Rectenna (DGS Rectenna를 이용한 Wake-Up 수신기 시스템 설계)

  • Choi, Tae-Min;Lee, Seok-Jae;Lee, Hee-Jong;Lim, Jong-Sik;Ahn, Dal;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.377-383
    • /
    • 2012
  • In this paper, a new design of a planar rectenna system and its application to a wake-up receiver operating for incoming signal with a specified frequency are proposed for low-power sensor system applications. The planar and integrable rectenna system is designed with DGSs(Defected Ground Structures) at 2.4 GHz. The DGSs reject harmonic components of 4.8 and 7.2 GHz and eliminate 2.4 GHz fundamental frequency for DC-path filtering. The rectenna system has been evaluated for the conversion output voltages, and applied to the switching of a power supply at the low-power sensor receivers. The proposed system has been evaluated for the wake-up performance by testing a lownoise amplifier operation. From the experimental results, the proposed receiver system presents excellent operation performances.

Two Axis Attitude Control System Design of Momentum Biased Satellite (모멘텀 바이어스 인공위성의 2축 자세제어 시스템 설계)

  • Lee, Seung-U;Seo, Hyeon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • It is required to develop a highly reliable attitude & orbit control system of satellite that is less expensive as the technology of satellite design & integration is recently matured dramatically. To accomodate this kind of needs, the two axis attitude control method for wheel-based momentum-biased satellite system whose momentum bias vector points to a certain direction(sun direction), is developed using simple but reliable sensors and actuator: three axis magnetometer and coarse sun sensor are used as sensors, and magnetic torque bars are used as actuator. Classical PD type controller design methodologies are applied on a satellite system for the two axis control with the proper assumptions. Nonlinear simulation results are included to demonstrate the long term stability and the performance of closed-loop system design results.

Flow Rate Control System Design for the Industrial Valve (산업용 밸브의 유량제어 시스템 설계)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.387-392
    • /
    • 2020
  • This paper proposes a flow-rate control system for industrial valves. Industrial valves are used in piping systems to control the flow rate and pressure. In general, valves used in pipelines are classified into globe valves, butterfly valves, and ball valves according to the shape. Motor, hydraulic, and pneumatic systems are used for operating valves. The flow meter should measure the flow rate when configuring the flow-rate control system. On the other hand, because the flow rate of the valve can be expressed by flow coefficient, a control scheme is proposed using the pressure deviation, which measures at the front and rear of the valve. The transfer function for the valve, according to the control input, was estimated using the signal compression method. Based on the induced transfer function, the disturbance observer was designed to improve the command following the performance of the valve stem. The performance of the proposed control method is compared with the flow-rate control result using the flow meter used.

Study on Model Identification and Pre-Differential 2-DOF PID Flow Control Algorithm for Cooling Processes (냉각 프로세서의 모델규명 및 선행미분형 2 자유도 PID 유량 제어 알고리즘에 관한 연구)

  • Hwang, I-Cheol;Park, Cheol-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1917-1923
    • /
    • 2010
  • This study focuses on model identification and a 2-DOF PID control algorithm for cooling processes; a pneumatic butterfly-type control valve is used for this purpose. The mathematical model is a transfer function composed of a time delay and a second-order delay system. The control valve is identified as a first-order delay system with a time delay and included in the controlled plant. From the experimental data sets for a demo plant, the model parameters are identified, and the 2-DOF PID control gains are analytically derived by Kitamori's method. We show via a computer simulation and an experimental test that the performance of the proposed 2-DOF PID control system is better than that of a conventional 1-DOF PID control system.

Programming Model for SODA-II: a Baseband Processor for Software Defined Radio Systems (SDR용 기저대역 프로세서를 위한 프로그래밍 모델)

  • Lee, Hyun-Seok;Yi, Joon-Hwan;Oh, Hyuk-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.78-86
    • /
    • 2010
  • This paper discusses the programming model of SODA-II that is a baseband processor for software defined radio (SDR) systems. Signal processing On-Demand Architecture Ⅱ (SODA-II) is an on-chip multiprocessor architecture consisting of four processor cores and each core has both an wide SIMD datapath and a scalar datapath. This architecture is appropriate for baseband processing that is a mixture of vector computations and scalar computations. The programming model of the SODA-II is based on C library routines. Because the library routines hide the details of complex SIMD datapath control procedures, end users can easily program the SODA-II without deep understanding on its architecture. In this paper, we discuss the details of library routines and how these routines are exploited in the implementation of baseband signal processing algorithms. As application examples, we show the implementation result of W-CDMA multipath searcher and OFDM demodulator on the SODA-II.

Design and Analysis of A New Type of the Motor-Driven Blood Pump for Artificial Heart (인공심장용 전동기구동형 혈액 펌프의 설계 및 해석에 관한 연구)

  • 천길정;김희찬
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 1989
  • A new motor-driven blood pump for artificial heart was developed. In this blood pump, a small size, high torque brushless DC motor was used as an energy converter and the motor rolls back and forth on a circular track. This movement of the "rolling-cyliner" causes blood ejection by alternately pushing left or right polyurethane blood sacs. This moving-actuator mechanism could be eliminate two potential problems of other motor-driven artificial hearts such as large size and poor anastomosis for the implantation. Theoretical analyses on the pump efficiency, the temperature rise, and the inflow mechanism were also performed. In a series of mock circulation tests, the theoretical analyses were compared to the measured hemodynamic and mechanical values. The pump system was shown to have sufficient cardiac output (upto 9 L/min), sensitivity to preload, and mechanical stability to be tested as an implantable total artificial heart.ial heart.

  • PDF

A Study on the Construction of Littman and Littrow Type Tunable Diode Laser Systems (Littman 및 Littrow 타입 파장가변 반도체 레이저의 제작에 관한 연구)

  • Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.273-277
    • /
    • 2006
  • In this paper, we constructed the Littman type and fixed Littrow type tunable external-cavity diode laser systems. The laser output, which is the 0th-order diffracted beam from the diffraction grating in an external cavity, was the single longitudinal mode. Its FWHM was measured as less than 9MHz. With the diode driving current of 140mA and operating temperature of $25^{\circ}C$, the coarse tuning range of 5.375nm was measured for the Littman type, and of 13.65nm was measured for the fixed Littrow type. A fine tuning experiment in which an external mirror was rotated by a PZT driven by a sawtooth wave was performed, and its tuning range of 0.042nm was measured for both types. The fixed Littrow type tunable external-cavity diode laser system was an improvement on the conventional Littrow type tunable laser system in which the output direction varies due to the grating embedded in the mirror plate.

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors (표면 부착형 영구자석 전동기의 새로운 상수 추정 방법)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.