• Title/Summary/Keyword: 시스템신뢰성

Search Result 5,839, Processing Time 0.041 seconds

A Study on the Continuous Usage Intention Factors of O2O Service (O2O 서비스의 지속사용의도에 미치는 영향요인 연구)

  • Sung Yong Jung;Jin Soo Kim
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2018
  • A smart phone has been widely spread around world and makes people enjoy online shopping in any time and any place. Recently it also changes the distribution environment. O2O (Online-to-Offline) service becomes new normal due to its convenience of ease shopping of product and services. O2O service market shows steady and steep growth, It is reported that, however, 80% of the businesses has been discontinued within the first year because of unstable business models, customer dissatisfaction and distrust of service. Therefore, it is very important research issue to find out influential factors promoting continuous usage intention of O2O service. Previous study shows that it only considers online characteristics and lack of analysis about offline characteristics and social impact factors. The purpose of this paper is to find out continuous usage intention factors of O2O services by literature review, case analysis, and empirical test. A comprehensive research model and related hypothesis are developed and tested by using a structural equation, Survey was carried out among users who have used O2O service including payment service for at least once. Finally 611 samples are selected out of total 813 surveys. The result shows that the model is theoretically proved and 12 out of 17 hypotheses are accepted. The contribution of this paper is that it provides a new theoretical research model about continuous usage intention factors as well as practical guidelines about promoting continuous usage and growth strategies of O2O service.

A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis (텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석)

  • Kam, Miah;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.53-77
    • /
    • 2012
  • This study analyses the difference of contents and tones of arguments among three Korean major newspapers, the Kyunghyang Shinmoon, the HanKyoreh, and the Dong-A Ilbo. It is commonly accepted that newspapers in Korea explicitly deliver their own tone of arguments when they talk about some sensitive issues and topics. It could be controversial if readers of newspapers read the news without being aware of the type of tones of arguments because the contents and the tones of arguments can affect readers easily. Thus it is very desirable to have a new tool that can inform the readers of what tone of argument a newspaper has. This study presents the results of clustering and classification techniques as part of text mining analysis. We focus on six main subjects such as Culture, Politics, International, Editorial-opinion, Eco-business and National issues in newspapers, and attempt to identify differences and similarities among the newspapers. The basic unit of text mining analysis is a paragraph of news articles. This study uses a keyword-network analysis tool and visualizes relationships among keywords to make it easier to see the differences. Newspaper articles were gathered from KINDS, the Korean integrated news database system. KINDS preserves news articles of the Kyunghyang Shinmun, the HanKyoreh and the Dong-A Ilbo and these are open to the public. This study used these three Korean major newspapers from KINDS. About 3,030 articles from 2008 to 2012 were used. International, national issues and politics sections were gathered with some specific issues. The International section was collected with the keyword of 'Nuclear weapon of North Korea.' The National issues section was collected with the keyword of '4-major-river.' The Politics section was collected with the keyword of 'Tonghap-Jinbo Dang.' All of the articles from April 2012 to May 2012 of Eco-business, Culture and Editorial-opinion sections were also collected. All of the collected data were handled and edited into paragraphs. We got rid of stop-words using the Lucene Korean Module. We calculated keyword co-occurrence counts from the paired co-occurrence list of keywords in a paragraph. We made a co-occurrence matrix from the list. Once the co-occurrence matrix was built, we used the Cosine coefficient matrix as input for PFNet(Pathfinder Network). In order to analyze these three newspapers and find out the significant keywords in each paper, we analyzed the list of 10 highest frequency keywords and keyword-networks of 20 highest ranking frequency keywords to closely examine the relationships and show the detailed network map among keywords. We used NodeXL software to visualize the PFNet. After drawing all the networks, we compared the results with the classification results. Classification was firstly handled to identify how the tone of argument of a newspaper is different from others. Then, to analyze tones of arguments, all the paragraphs were divided into two types of tones, Positive tone and Negative tone. To identify and classify all of the tones of paragraphs and articles we had collected, supervised learning technique was used. The Na$\ddot{i}$ve Bayesian classifier algorithm provided in the MALLET package was used to classify all the paragraphs in articles. After classification, Precision, Recall and F-value were used to evaluate the results of classification. Based on the results of this study, three subjects such as Culture, Eco-business and Politics showed some differences in contents and tones of arguments among these three newspapers. In addition, for the National issues, tones of arguments on 4-major-rivers project were different from each other. It seems three newspapers have their own specific tone of argument in those sections. And keyword-networks showed different shapes with each other in the same period in the same section. It means that frequently appeared keywords in articles are different and their contents are comprised with different keywords. And the Positive-Negative classification showed the possibility of classifying newspapers' tones of arguments compared to others. These results indicate that the approach in this study is promising to be extended as a new tool to identify the different tones of arguments of newspapers.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

A Study on the Effects of Support Service of Gyeonggi-do Cultural Contents Area Business Incubating Center on Corporate Performance: Focusing on the Business Validity of Business Start-Up Items (경기도 문화콘텐츠분야 창업보육센터 지원서비스가 입주기업 성과에 미치는 영향에 관한 연구: 창업아이템의 사업타당성을 중심으로)

  • Hong, Dae Ung;Lee, Il han;Son, Jong Seo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.4
    • /
    • pp.47-60
    • /
    • 2017
  • As the recent cultural contents area start-ups are creating remarkable outcomes such as investment attraction together with the reinforced institutional supports from the government, this study aimed to reverify the significance of researches related to correlation analysis between service of Business Incubating Center of Small & Medium Business Administration operated with no separation of business type, and corporate performance, in the aspect of Business Incubating Center in cultural contents area, and also to suggest the importance of establishing the business incubating system in the systematic and rational cultural contents area through the differentiated business incubating service by verifying the significant effects of the business validity of items on corporate performance, and then discovering services suitable for business incubating in cultural contents area, targeting Gyeonggi-do cultural contents area Business Incubating Center recently showing the biggest growth. Especially, contrary to the existing researches, in order to verify the characteristics of Gyeonggi-do Cultural Contents Business Incubating Center, the personal support service and marketing support service were included. It also aimed to understand the effects of the business validity of start-up items on corporate performance. Summarizing the results of this study, contrary to the results of the existing researches saying that spatial & additional support service, management support service, technical support service, personal support service, and marketing support service had significant effects on corporate performance, among the support service of Gyeonggi-do cultural contents area Business Incubating Center, the spatial & additional support service, personal support service, and marketing support service had significantly positive(+) effects on corporate performance while the management support service and technical support service had no significant effects on it. Comparing with the results of the researches on the support service of Business Incubating Center(BI) of Small & Medium Business Administration, the effects of the management support service and technical support service of Gyeonggi-do cultural contents area Business Incubating Center on corporate financial/non-financial performance were not huge. Also, in the results of analyzing the business validity of star-up items, the spatial & additional support service, management support service, and technical support service did not have significant effects on the business validity of start-up items while the personal support service and marketing support service had significantly positive(+) effects on it. In case when selecting companies, Gyeonggi-do Business Incubating Center emphasized the business validity of start-up items. However, the support service provided after the selection did not have huge effects on the business validity of start-up items. Lastly, in the results of analyzing the effects of the business validity of start-up items in Gyeonggi-do cultural contents area on corporate performance, among the success factors of business start-up, the business validity of start-up items was an important element having effects on corporate performance(financial/non-financial) in the cultural contents area.

  • PDF

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Development of an Efficient Management Program for the Home-based Cancer Patient Management Project of Public Health Centers (보건소 재가 암환자 관리사업의 효율적 관리 방안 개발)

  • Cho, Hyun;Son, Joo-Young;Heo, Jeom-Do;Jin, Eun-Hee
    • Journal of Hospice and Palliative Care
    • /
    • v.10 no.3
    • /
    • pp.128-136
    • /
    • 2007
  • Purpose: The purpose of this study is to investigate the current state of the home-based cancer patient management project of public health centers throughout the country. The results of the investigation is employed to identify obstacles to the execution of the program and, finally, to develop an efficient management program of home-based cancer patients. Methods: Data on the home-based cancer patient management project were collected and analyzed through visiting interviews or telephone interviews with 225 public health centers throughout the country for six months from July to December, 2006. Results: Obstacles to the present execution of the home-based cancer patient management project were identified. Some of them are : (1) patients' low trust in cancer patient management by local health centers, (2) absence of programs customized to local communities, (3) lack of personnel and vehicles for home-based cancer patient management, (4) lack of education program for personnel in charge of home-based cancer patient management, (5) problems in public health doctors, weak connection to private medical institutions, (6) absence of medical institutions and hospice facilities for cancer patients, and (7) non-standardized volunteer workers, so on. Considering all these problems, some effective management methods are proposed. The basic concept is to keep the autonomy and variety of the local helath centers. And based on this concept, three models of (1) public health center controlled model, (2) medical institutions and hospice facilities-entrusted model and (3) medical institutions and hospice facilities-cooperative model are developed. Conclusion: By adopting an adequate model among proposed three models, the public health centers are expected to achieve an efficient utilization of material resources and manpower. In addition, by inventing their own programs that are proper for the local societies, they can improve the home-based cancer patient management.

  • PDF

Target Advertisement Service using a Viewer's Profile Reasoning (시청자 프로파일 추론 기법을 이용한 표적 광고 서비스)

  • Kim Munjo;Im Jeongyeon;Kang Sanggil;Kim Munchrul;Kang Kyungok
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.43-56
    • /
    • 2005
  • In the existing broadcasting environment, it is not easy to serve the bi-directional service between a broadcasting server and a TV audience. In the uni-directional broadcasting environments, almost TV programs are scheduled depending on the viewers' popular watching time, and the advertisement contents in these TV programs are mainly arranged by the popularity and the ages of the audience. The audiences make an effort to sort and select their favorite programs. However, the advertisement programs which support the TV program the audience want are not served to the appropriate audiences efficiently. This randomly provided advertisement contents can occur to the audiences' indifference and avoidance. In this paper, we propose the target advertisement service for the appropriate distribution of the advertisement contents. The proposed target advertisement service estimates the audience's profile without any issuing the private information and provides the target-advertised contents by using his/her estimated profile. For the experimental results, we used the real audiences' TV usage history such as the ages, fonder and time of the programs from AC Neilson Korea. And we show the accuracy of the proposed target advertisement service algorithm. NDS (Normalized Distance Sum) and the Vector correlation method, and implementation of our target advertisement service system.

The Accuracy Evaluation according to Dose Delivery Interruption and Restart for Volumetric Modulated Arc Therapy (용적변조회전 방사선치료에서 선량전달의 중단 및 재시작에 따른 정확성 평가)

  • Lee, Dong Hyung;Bae, Sun Myung;Kwak, Jung Won;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • Purpose: The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Materials and Methods: Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. Results: The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. Conclusion: As a result, We could make sure that the interruption of this investgation are not enough to seriously affect dose delivery of VMAT by analyzing the measured data. But this investigation did not reflect all cases about interruptions and errors regarding the movement of a gantry rotation, collimator and patient So, We should continuously maintain a treatment machine and program to deliver the accurate dose when we perform the VMAT for the many kinds of cancer patients.

  • PDF

A Comparative Study of Information Delivery Method in Networks According to Off-line Communication (오프라인 커뮤니케이션 유무에 따른 네트워크 별 정보전달 방법 비교 분석)

  • Park, Won-Kuk;Choi, Chan;Moon, Hyun-Sil;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.131-142
    • /
    • 2011
  • In recent years, Social Network Service, which is defined as a web-based service that allows an individual to construct a public or a semi-public profile within a bounded system, articulates a list of other users with whom they share connections, and traverses their list of connections. For example, Facebook and Twitter are the representative sites of Social Network Service, and these sites are the big issue in the world. A lot of people use Social Network Services to connect and maintain social relationship. Recently the users of Social Network Services have increased dramatically. Accordingly, many organizations become interested in Social Network Services as means of marketing, media, communication with their customers, and so on, because social network services can offer a variety of benefits to organizations such as companies and associations. In other words, organizations can use Social Network Services to respond rapidly to various user's behaviors because Social Network Services can make it possible to communicate between the users more easily and faster. And marketing cost of the Social Network Service is lower than that of existing tools such as broadcasts, news papers, and direct mails. In addition, Social network Services are growing in market place. So, the organizations such as companies and associations can acquire potential customers for the future. However, organizations uniformly communicate with users through Social Network Service without consideration of the characteristics of the networks although networks have different effects on information deliveries. For example, members' cohesion in an offline communication is higher than that in an online communication because the members of the offline communication are very close. that is, the network of the offline communication has a strong tie. Accordingly, information delivery is fast in the network of the offline communication. In this study, we compose two networks which have different characteristic of communication in Twitter. First network is constructed with data based on an offline communication such as friend, family, senior and junior in school. Second network is constructed with randomly selected data from users who want to associate with friends in online. Each network size is 250 people who divide with three groups. The first group is an ego which means a person in the center of the network. The second group is the ego's followers. The last group is composed of the ego's follower's followers. We compare the networks through social network analysis and follower's reaction analysis. We investigate density and centrality to analyze the characteristic of each network. And we analyze the follower's reactions such as replies and retweets to find differences of information delivery in each network. Our experiment results indicate that density and centrality of the offline communicationbased network are higher than those of the online-based network. Also the number of replies are larger than that of retweets in the offline communication-based network. On the other hand, the number of retweets are larger than that of replies in the online based network. We identified that the effect of information delivery in the offline communication-based network was different from those in the online communication-based network through experiments. So, you configure the appropriate network types considering the characteristics of the network if you want to use social network as an effective marketing tool.