• Title/Summary/Keyword: 시멘트 페이스트 압축강도

Search Result 117, Processing Time 0.024 seconds

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

The Degree of Hydration and Mechanical Properties of High Volume Fly Ash Cement (하이볼륨 플라이애시 시멘트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.95-102
    • /
    • 2022
  • Recently, there has been a growing interest in reducing greenhouse gases in all industrial fields. In the construction industry, studies have been conducted for the use of high-volume fly ash concrete to replace cement with fly ash. Quantitative measurements of cement hydration and fly ash reactivity enable a clear understanding of the strength development mechanism of high-volume fly ash concrete. It is very difficult to describe the reactivity in a simple way because the hydration and pozzolanic reactions of cement paste containing fly ash are very complex and the composition of the hydration product cannot be accurately determined. This study investigated the hydration and mechanical properties of high volume fly ash (HVFA) cement according to the substitution rate of fly ash (FA). The hydration degree of cement and the reactivity of FA were evaluated through the selective dissolution method and the non-evaporable water content of the paste according to age. In addition, compressive strength was measured using HVFA mortar specimens according to age. As a result of the experiment, as the substitution rate of fly ash increased, the hydration degree of cement increased, but the reactivity of FA decreased.

Effect of Neutralized Red Mud on the Strength Properties of Cement Paste (시멘트 페이스트의 강도특성에 미치는 중화 레드머드의 영향)

  • Kang, Hye Ju;Kang, Suk-pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.27-28
    • /
    • 2020
  • In this study, as a measure to recycle red mud, which is a byproduct of the Bayer Process, red mud was manufactured as liquid and recycled without drying and grinding. Previous studies have shown that mechanical performance decreases when liquid red mud is applied to cement concrete. Therefore, in this study, liquid red mud was neutralized with nitric acid and applied to cement paste to examine the properties of cement paste according to the addition of red mud. As a result, the compressive strength of 10% liquid red mud decreased by 37.7% compared to Plain, and 10% liquid red mud indicates similar strength to Plain and restores the strength.

  • PDF

Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack (황산염침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.121-128
    • /
    • 2007
  • The present study evaluates the resistance to sulfate attack of cement matrix with or without silica fume. The main variable was the replacement levels of silica fume. In order to introduce sulfate attack to cement matrix, mortars and pastes was exposed to sodium sulfate solution for 510 days. Visual examination, expansion and compressive strength loss of mortars in addition to characteristics of pore for the paste samples were regularly investigated. From the test results, it was clearly observed that the cement matrix with silica fume was very resistant to sulfate attack irrespective of the replacement levels of silica fume. However, the severe deterioration due to sulfate attack was found in cement matrix without silica fume.

Effects of the Reaction Degree of Ground Granulated Blast Furnace Slag on the Properties of Cement Paste (고로슬래그 미분말의 반응도가 시멘트 페이스트의 물성에 미치는 영향에 관한 연구)

  • Kim, Dong-Yeon;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.723-730
    • /
    • 2014
  • The usage of Ground Granulated Blast Furnance Slag (GGBFS) has been increased recently. Studies on the cement hydration model incorporating GGBFS as well as the properties of cement paste done with GGBFS such as compressive strength, hydration products and hydration heat have been the subjects of many researches. However, studies on the reaction degree of GGBFS that affect the properties of cement paste incorporating GGBFS are lacking globally and specially in Korea. Thus, in this study, the reaction degree of GGBFS using the method if selective dissolution, compressive strength, the amount of chemical bound water and $Ca(OH)_2$ were measured and analysed in accordance with water-binder ratio, replacement ratio of GGBFS, and curing temperature. The results show that the reaction degree of GGBFS, the amount of chemical bound water and $Ca(OH)_2$ in cement paste with GGBFS were higher in conditions where the replacement ratio of GGBFS was low and both water-binder ratio and curing temperature were high. Finally, the reaction degree of GGBFS was achieved at a value between 0.3~0.4.

Effect of Lignin Addition on Characteristics of Cement Pastes (리그닌 첨가가 시멘트 페이스트 특성에 미치는 영향)

  • Sim, Jae-Hong;Park, Joon-Seok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • This research was conducted to evaluate the effect of lignin addition on the characteristics of portland cement pastes. Lignin was added to cement at the ratio of 0.5 to 2.0% on dry weight basis. The specimens were cured for 3, 7, 14, and 28 days. Distilled water and sea water were used as leaching solutions. pH and concentration of Ca, Na, and K ions in the leaching solutions were analyzed. Lignin addition of 0.5~2.0% to cement pastes decreased the leached concentration of Ca, Na, and K ions for distilled water, compared to the case without lignin addition. However, a significant pH variation of the leached solutions was not observed with the lignin addition. Lignin addition significantly improved the compressive strength of cement pastes, approximately 30~60% for curing in distilled water and 3~20% for that in sea water.

Hydration and Electrical Resistance of Cement Composites Containing MWCNTs (MWCNT가 첨가된 시멘트복합체의 수화 및 전기저항 특성)

  • Lee, Gun-Cheol;Kim, Young-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Carbon nanotubes are used in various industries with their excellent mechanical properties and electrical conductivity. In the construction industry, research is being conducted to give self-sensing capabilities to structures, but the results of experiments vary among researchers, and the analysis is insufficient. Therefore, in this study, the hydration and electrical properties of MWCNT-added cement pastes were measured. The electrical resistance values of hydration heat, porosity, Rietveld quantitative analysis, compressive strength, and distance were measured.. The heat resistance, porosity, Rietvelt quantitative analysis, compressive strength and distance were measured according to electrical resistance. Experimental results showed that the heat of hydration decreased with increasing MWCNT. XRD Rietveld quantitative analysis showed that there was no significant difference in the amount of hydration products with increasing addition rate of MWCNT. As a result of SEM analysis, the MWCNT is agglomerated by van der Waals forces, and this area is considered to be caused by voids and weak areas. The electrical resistance value decreases as the addition rate is increased, and thus may play a role for magnetic sensing in the future.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Development of Application Block Using Geobond and Ash from Sewage Sludge Incinerator II (하수슬러지 소각재와 무기바인더를 이용한 응용 블록 개발 II)

  • Lee, Hyun-joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.412-417
    • /
    • 2015
  • This study investigated to recycle geobond and ash produced in thesewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement (High Early Strength Portland cement, Micro cement), geobond and sand mixed with sewage sludge ash (SSA). Chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting High Early Strength Portland cement, Micro cement and geobond. Results showed that unconfined the long term compressive strength could be obtained components of sewage sludge ash. It exceeded more than double score 64.6 MPa of the Korean standard ($22.54MPa=229.7kg/cm^2$). Microstructure of solidified block for the different admixture was related to the compressive strength according to SEM analysis. Optimum mixing range of the sewage sludge ash to each binders were found to be 10~40% which can widly safely regulate the confined a long term compressive strength. The best binder of long term compressive strengh was revealed Geobond more than High Early Strength Portland cement and Micro cement. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder & application block for recycling.

Physical properties of concrete using high quality recycled aggregates (고품질 재생골재를 사용한 콘크리트의 물리적 특성)

  • Um, Nam-Il;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Ahn, Ji-Whan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.350-354
    • /
    • 2005
  • 본 연구에서는 건설폐기물에 포함되어있는 폐콘크리트를 사용하여 $200^{\circ}C,\; 300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$로 각 온도에 따라 열화 처리한 후 분쇄하여 시멘트 페이스트 분리량과 골재의 물리적 특성을 파악하였다. 열화 처리의 온도가 높아질수록 시멘트 페이스트의 분리율은 높아졌으며, 압축강도는 낮아지는 경향을 보였다.

  • PDF