• Title/Summary/Keyword: 시멘트 콘크리트

Search Result 2,438, Processing Time 0.029 seconds

Recycling of the Bottom Ash, Sourced from the Local MSW (Municipal Solid Waste) Incinerators, as a Fine Sand for Concrete (소각장(燒却場)에서 발생되는 바닥재의 콘크리트용 잔골재(骨材)로서의 재활용(再活用))

  • Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.40-47
    • /
    • 2007
  • This paper described recycling of the bottom ash, sourced from the local incinerators as a fine sand for concrete. 10% bottom ash was substituted for the ordinary beach sand in the mortar(on a weigh basis), in conjunction with the pozzolznic diatomite. The specimens were tested according to KS L 5105 and analysed by TCLP(Toxic Chemical Leaching Procedure). The results showed that the hazardous heavy metals in the bottom ash are within the maximum permissible limit of TCLP. The compressive strength of the mortar with 10% bottom ash was highly improved, compared to the control mortar when the pozzolanic diatomite was used. It revealed that the hazardous heavy metals of the mortar with 10% bottom ash were leached within the maximum permissible limit of TCLP. It was concluded that the bottom ash can be reused as a fine sand for concrete when the pozzolanic diatomite was used as a stabilizer.

Autogenous Shrinkage and Engineering Properties of the High Strength Concrete Using Soybean and Waste Edible Oil (식물성 유지 및 폐식용유를 사용한 고강도 콘크리트의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.110-117
    • /
    • 2011
  • This study investigated possibilities for a new reducing shrinkage method of soybean oil(SO) and waste oil(WO) to compare with shrinkage reducing agent(RS) and expansion additive(EA). There was no big difference to flow, air contents, and compressive strength of plain to use SO and WO. For the reducing shrinkage performance, SO and WO was more effective than RS and EA, because their fatty acid reacted with calcium hydroxide of concrete to turn soap. For the pore distribution by porosimter, $0.01{\sim}0.1{\mu}m$ pores of SO and WO were 0 ml/g, and $10{\sim}100{\mu}m$ also remarkably lower than any others. In these results, it inferred that they filled up capillary pore and mitigated autogenous shrinkage by their saponification of their fatty acid and calcium hydroxide.

  • PDF

Workability of Polymeric Concrete for Lunar Infrastructure (달 시설물을 위한 폴리머 콘크리트의 시공성 연구)

  • Lee, Jaeho;Lee, Tai Sik;Ann, Ki Yong;Chang, Byung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.507-512
    • /
    • 2017
  • For manned planetary exploration, human beings are developing technologies that can permanently reside on the planet, and the basic three elements of residence, such as clothing and shelter, are required to support essential technologies in construction. In order to develop infrastructure construction technology internationally, various materials and methods such as local cementation, sulfur and aluminum have been tried. in this study, a purpose is proposed a polymer concrete construction validation technology that appropriates the conditions required for manmade exploration in order to develop construction infrastructure material technology using polymer. Concrete specimens with a 10% weight ratio polymer prepared by heating on the bottom were stabilized after 2 hours of heating, and the strength was lower than the top heating method, but the solidifying speed was 2 times faster. These results are expected to be applicable not only to construction of lunar facilities for manned exploration but also to improve the construction of infrastructures such as roads and levees to prevent dust.

Influence of Blast Furnace Slag and Anhydrite on Strength of Shotcrete (고로슬래그와 무수석고가 숏크리트의 강도에 미치는 영향)

  • Ryu, Sung-Hee;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • This study investigated the compressive strength, flexural strength, setting time, and rebound when blast furnace slag and anhydrite, which are widely used mineral admixtures for concrete, are applied to shotcrete. When Ordinary Portland Cement (OPC) was replaced at a rate of 10% with blast furnace slag and anhydrite, the initial and final setting time requirements were all satisfied. However, when OPC was replaced at a rate of 20%, final setting was delayed, revealing that this mixture was not suitable for shotcrete. Compressive strength test results showed that the mixture with 10% OPC replacement rate met the target strength at 1 day and 28 days for permanent tunnel support usage. Particularly, the mixture designed with OPC replacement by blast furnace slag and anhydrite at rates of 5% showed the highest compressive strength. Rebound measurements revealed that this mixture exhibited excellent performance with 23% reduction in the rebound compared to the shotcrete that was produced with only OPC binder.

Durability and Performance Requirements in Canadian Cement and Concrete Standards (캐나다 시멘트 및 콘크리트의 내구성 및 제성능에 대한 규준)

  • Hooton, R.D.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.5-21
    • /
    • 2006
  • Traditional standards and specifications for concrete have largely been prescriptive, (or prescription-based), and can sometimes hinder innovation and in particular the use of more environmentally friendly concretes by requiring minimum cement contents and SCM replacement levels. In December 2004, the Canadian CSA A23.1-04 standard was issued which made provisions (a) for high-volume SCM concretes, (b) added new performance requirements for concrete, and (c) clearly outlined the requirements and responsibilities for use in performance-based concrete specifications. Also, in December 2003, the CSA A3000 Hydraulic Cement standard was revised. It (a) reclassified the types of cements based on performance requirements, with both Portland and blended cements meeting the same physical requirements, (b) allows the use of performance testing for assessing sulphate resistance of cementitious materials combinations, (c) includes an Annex D, which allows performance testing of new or non-traditional supplementary cementing materials. From a review of international concrete standards, it was found that one of the main concerns with performance specifications has been the lack of tests, or lack of confidence in existing tests, for judging all relevant performance concerns. Of currently used or available test methods for both fresh, hardened physical, and durability properties, it was found that although there may be no ideal testing solutions, there are a number of practical and useful tests available. Some of these were adopted in CSA A23.1-04, and it is likely that new performance tests will be added in future revisions. Other concerns with performance standards are the different perspectives on the point of testing for performance. Some concrete suppliers may prefer processes for both pre-qualifying the plant, and specific mixtures, followed only with testing only 'end-of-chute' fresh properties on-site. However, owners want to know the in-place performance of the concrete, especially with high-volume SCM concretes where placing and curing are important. Also, the contractor must be aware of, and share the responsibility for handling, constructability, curing, and scheduling issues that influence the in-place concrete properties.

  • PDF

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 건조수축에 관한 연구)

  • Kang, Su-Tae;Joh, Chang-Bin;Park, Jong-Sup;Ryu, Gum-Sung;Kim, Sung-Wook;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.737-740
    • /
    • 2008
  • When UHSFRC is applied to structures, it can be expected that it shows excellent performance in a point of constructability and load capacity. However, its rich mix can cause some problems concerning the long-term behavior such as shrinkage and creep. Therefore it is inevitably needed to investigate its long-term behavior in order to apply it to structures safely. This study is dealing with the drying shrinkage of UHSFRC. UHSFRC shows relatively fast drying shrinkage in the early exposed ages and slow moisture diffusion caused by compact microstructure of the material. It was found that The KCI model to predict the drying shrinkage did not properly represent these properties of UHSFRC. therefore a modified drying shrinkage model applicable to UHSFRC, which has different shrinkage properties from that of normal concrete, was proposed

  • PDF

Enhancing the Blast Resistance of Structures Using HPFRCC, Segmented Composites, and FRP Composites (HPFRCC, 분절 복합체 및 FRP를 활용한 구조물의 내폭 성능 향상)

  • Yoon, Young-Soo;Yang, Jun-Mo;Min, Kyung-Hwan;Shin, Hyun-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.745-748
    • /
    • 2008
  • The past structures were just required bearing capacity to service load, serviceability, and resistance to corrosion. However this point of view has changed after 9.11 terrorism, capacities which can bear impact loading by explosion, and heat by fire happening at the same time, become to be important as a basic condition. The blast resistance capacity of structures is very important part against all over the world is intimidated by terrorism everyday in current point of time. The target of this research is a development of segmented composites and layered structures with high blast resistance using cementitious composites, concrete and FRP composites, which has high tensile strength and ductility, to apply in not only existing facilities but also new ones. Through the improvement of blast resistance, casualties and economic loss can be minimized, and it is possible to diminish the structure collapse and delay the time of structure collapse by thermal effect, impact loading, dynamic loading and high strain.

  • PDF

Effect of Superplasticizers and Admixtures on the Fluidity and Compressive Strength Development of Cementless Mortar Using Hwangtoh Binder (혼화제·재가 무시멘트 황토 모르타르의 유동성 및 압축강도 발현에 미치는 영향)

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Kim, Sun-Young;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.793-800
    • /
    • 2006
  • This paper reports test results to assess the influence of superplasticizers and different admixture on the flow and compressive strength development of cementless mortar using developed hwangtoh binder. Test specimens were classified into four groups: series for I the mixing ratio of superplasticizers, series II for a kind and replacement level of admixtures according to the variation of water/hwangtoh binder ratio, series III for the specific surface area and replacement level of ground granulated blast-furnace slag and series IV for the replacement level of powered superplasticizer agent developed to improve slump loss of concrete. The proper replacement level of each admixture is proposed for enhancement the flow and compressive strength of the hwangtoh binder mortar.

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.

Mechanism on Suppression of Alkali Silica Reaction by Ground Granulated Blast-Furnace Slag in NaCl Solution (NaCl 수용액 중에서 고로슬래그미분말의 알칼리실리카반응에 대한 팽창억제 메카니즘)

  • 김창길;삼포상;강원호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 1997
  • This study deals with the suppressing characteristics of alkali-silica reaction by ground granulated blast-furnace slag(GGBS) in NaCl solution. NaCl contents used in the experiment ranges over 0%, 2.8% and 20%. Reactive aggregate used is Japanese andesite. Also, three GGBSs of about 4.000. 6, 000 and $8, 000cm^2/g$ were used in the experiment. The replacement proportions of portland cement by GGBSs were 40%. 60%, 70% and 80%. respectively. The specimens with GGBS were severely contracted according to the increasing replacement ratio in NaCl solution. The contraction rate increases according to the increasing in NaCl content. Also. it does with increasing the blaine fineness of GGRS. It is concluded that the suppression of alkali-silica reaction by GGBS in NaCl solution is complished by contraction of GGBS due to chloride ion induced chemical shrinkage.