• Title/Summary/Keyword: 시멘트 콘크리트

Search Result 2,438, Processing Time 0.025 seconds

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

A Fundamental Research on Determining Segregation Boundary using Rheological Parameters for 21 and 24MPa grade of Normal Strength Concrete (레올로지 정수를 이용하여 21, 24MPa급 일반강도 콘크리트의 재료분리 경계를 판단하기 위한 기초연구)

  • Lee, You-Jung;Lee, Young-Jun;Han, Dongyeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.399-407
    • /
    • 2020
  • The aim of the research is to provide the boundary conditions for segregation of normal strength grade and high fluidity concrete mixture (so called mid-fluidity concrete) with rheology parameters. Since the normal strength grade concrete mixture has a relatively high water-to-cement ratio and no SCMs, it is easy to be segregated when superplasticizer is added. Hence, to achieve the mid-fluidity concrete of normal strength grade and high fluidity, preventing segregation of the mixture is inevitable. In this research, using two superplasticizers with different solid concentrations, the flow behaviors and rheological behaviors were assessed by increasing fluidity until the segregation happened. According to the experiment in this research, an unusual behavior in rheology parameters was observed when the concrete mixture started to be segregated. From this results and report, it is expected to contribute on the definition of segregation with rheological test methods.

Quality Control Method for the Concrete from Multiple Suppliers (콘크리트 혼합타설시 품질확보 방안)

  • Kim, Kyung-Hoon;Lee, Sang-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • Concrete mix design controls the various concrete properties such as workability and strength. Fresh concrete requires workability and the hardened concrete requires compressive strength. If using the concrete from different supplier concurrently, the concrete placed can show different properties unlike originally designed. However most of construction sites place the concrete from several companies. One of the predictable problems is whether the ultimate performance of concrete achieves the originally designed performance after placing the concrete from several companies. Therefore this research aims to keep the concrete quality in the above cases. This research has been done through literature review, questionnaire and the verification at the sample construction site. A literature review describes the general characteristics and quality control of concrete and a questionnaire describes the awareness and implementation of Korean Construction Specification(KCS). The production capacity and the delivery capacity of concrete suppliers is smaller than the daily quantity required on the sample site, therefore the placing of the concrete with different mixing ratio is inevitable and it can not keep the KCS. As a conclusion, this research proposed 5 alternatives and one of them has been adopted, i.e. to unify the concrete mix design of multiple concrete suppliers.

Assessment of Formwork-Seepage Minimization in High Fluidity, Normal Strength Concrete Utilizing Thixotropic Properties (고유동 일반강도 콘크리트의 요변성 부여에 따른 거푸집 누출 저감 성능 분석)

  • Kim, Young-Ki;Lee, Yu-Jeong;Kim, In-Tae;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • The central objective of this study is to curtail the leakage of mortar or cement paste, often resultant of ill-constructed formwork, by implementing thixotropy in the formulation of high-fluidity, standard-strength concrete. When such concrete is utilized in smaller scale construction projects, instances of formwork gaps due to suboptimal construction precision may lead to significant leakage of mortar and paste, a problem not typically encountered with traditional slump-flow concrete. In this investigation, Polyvinyl Alcohol(PVA) and borax are incorporated into the concrete mixture to induce thixotropy. The experimental design includes varying methodologies for integrating PVA and borax, while assessing alterations in diverse concrete performances, including thixotropy and leakage reduction potential that simulates formwork gap conditions. Under the experimental conditions defined within this study, it was found that replacing, rather than merely adding PVA and borax, aids in averting water addition via suspensions. This approach yielded promising results in terms of concrete properties and proved efficacious in stemming leakage in concrete possessing sufficient thixotropy. Notably, when a 6% PVA suspension was substituted, a significant reduction in leakage was observed. Consequently, it is projected that construction quality can be ensured, even with lower precision formwork, by applying thixotropy to concrete through the use of PVA and borax.

Properties of Mixing Proportions with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축 강도수준별 배합특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Jung, Woo Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.163-169
    • /
    • 2009
  • The research performed a test concerning the fluidity and strength of concrete manufactured by combining lime stone power, fly ash, and blast furnace slag into two and three component systems, aiming at evaluating rheological and dynamic properties of concrete by manufacturing High Flowing Self-Compacting according to the strength changes of three levels. As a result of the research, for High Flowing Self-Compacting of 30 MPa, the combination of lime stone power 20% and fly ash 30% for securing quality and strength and adjusting viscosity satisfied the required performance. For High Flowing Self-Compacting of 50 MPa, the combination of blast furnace slag 10% and fly ash 20% satisfied the fluidity and strength of the requirement performance. Also, for 70 MPa that has many power contents, the combination of blast furnace slag 20% and fly ash 10% for the increase of fluidity and the reduction of viscosity satisfied the required performance. It is judged that fly ash in all combinations can be used to secure viscosity and reduce concrete amount. In addition, it is judged that for High Flowing Self-Compacting according to the levels of compressive strength the combination of three component system including fly ash is more appropriate than the combination of two component system.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

Engineering Characteristics of Wet-mixing Solidified Soil in Pavement Surfacing (습식 경화교반토 포장의 공학적 특성)

  • Yoo, Ji-Hyeung;Shu, Dong-Hyuk;Lee, Seong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.1-7
    • /
    • 2004
  • Roads, like bikeways, parkways and walks, are to be just capable of supporting light traffic and traveling public, but they are required to be human friendly and environmental-oriented. Lately soil-solidifier mixture, a kind of soil-cement, has developed and has been applied to the recycling and environment-oriented pavement as the surfacing material. Soil-solidifier pavement structure has been designed by only experience. To design this pavement mechanically, it is necessary to find out basic engineering properties of soil-solidifier mixture. This study focuses on finding out mechanical characteristics of the mixture according to mixture proportions and aging. Test molds with various mixture proportions are made, and then unconfined strength tests are performed for test molds with aging of the mixture. As the result of this study, it is found that the strength of the mixture increases with amount of cement and that maximum strength is achieved at 6%$\sim$8% of the ratio of solidifier and water. The strength increase rapidly until 14 days, after then slowly. After 28 days the strength of the mixture approaches to the constant value. The heat of hydration during curing of the mixture is measured no significantly. It also shows that temperature characteristics of the mixture is similar to that of soil. Since this mixture is mixed with soil and is able to improve engineering problems in pavement due to temperature, this mixture is expected to use effectively in the environment-oriented pavement for light traffic.

  • PDF

Application on the CFBC Fly Ash as a Stimulant to Improve the Early Strength of Hydration Portland Cement (슬래그시멘트 초기강도 증진을 위한 자극제로서 CFBC Fly ash의 활용연구)

  • Park, JongTak;Oh, Hongseob;Jung, Gwon Soo;Kang, Chang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • As the circulating fluidized bed combustor(CFBC) boilers system to generate electric power increase in order to reduce environmental pollution, a lot of CFBC fly ashes(CFFA) are produced. CFFA has limited use in concrete because it contains free CaO, which can cause cement expansion and rapid initial hydration. In this study, the microstructure and the initial development of compressive strength characteristics were experimentally analyzed to be used as a stimulant to replace natural gypsum by mixing with CFFA and phosphate gypsum to enhance the initial strength of portland blast furnace slag cement. The recycled gypsum was used as flue-gas desulfurization gypsum and phosphate gypsum. Experimental results show that the initial strength development is relatively lower when CFFA and dihydrate gypsum are mixed, but the strength improvement effect of the mixture with CFFA and anhydrous gypsum as an anhydritedII typed crystalized gypsum is similar to that of natural gypsum. As a result, it w as analyzed to have high possibility of use for stimulant of portland blast furnace slag cement.

Corrosion Prediction of a Cement Mortar-Grouted Rockbolt by Measuring Its Chloride Diffusion Coefficient (시멘트 모르타르계 록볼트 충전재의 염화물 확산계수 측정을 통한 록볼트 부식 예측)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Kim, Dong-Gyou;Park, Hae-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2006
  • This paper aims to predict the corrosion of a fully cement-grouted rockbolt induced by chloride diffusion in a cement mortar grout. From the viewpoint of the long-term durability, a rockbolt may be deteriorated by chemical components, such as sulphate and chloride, in groundwater. Especially, the steel rod of a rockbolt is corroded mainly by chloride. The rockbolt corrosion results in the volume expansion of a rod and then the cracking of a cement grout. In this study, the chloride diffusion coefficient of a cement mortar grout was used to evaluate the possibility of rockbolt corrosion by chloride, and to predict the long-term durability of a rockbolt. The electric acceleration test method was adopted to measure the chloride diffusion coefficient. In addition, a simple pullout testing system was newly proposed to measure the pullout capacity of a rockbolt more easily in a laboratory condition. From the experiments, it was showed that the chloride could diffuse in the cement grout more easily than in ordinary concrete materials. As a result, it was considered that a rockbolt might be easily corroded in a short term by the diffusion of chemical components with high concentration, although it was fully grouted.

Development of Flowable Backfill Material Using Waste Oyster Shell, Coal Ash, and Surplus Soil (굴패각, 석탄회 및 굴착잔토를 이용한 무다짐 처리공법용 뒷채움재 개발)

  • Kim, Min-Jin;Wang, Xue;Lee, Je Joo;Lee, Sang Ho;Kim, Sung Bae;Kim, Chang-Joon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.423-429
    • /
    • 2013
  • This study aimed to develop flowable backfill material using oyster shell, coal ash, and surplus soil. The high temperature (> $800^{\circ}C$) reaction was required to convert $CaCO_3$ to CaO. The solid specimens formed by pozzlanic reaction between CaO and coal ash showed low unconfined compressive strength. The effect of kaolin and blast furnace slag was also examined. It was found that CaO and coal ash could not be utilized due to high cost and low performance. The use of oyster shell without calcination ($CaCO_3$) was evaluated. The specimens composing of oyster shell and cement showed the higher unconfined compressive strength than that composing of coal ash and cement. However, use of oyster shell is limited in mortar due to the presence of salt. Addition of soil into oyster shell-coal ash-cement mixture satisfied the specification of flowable backfill material by optimizing their ratio.