• Title/Summary/Keyword: 시멘트 제조공정

Search Result 110, Processing Time 0.019 seconds

Case Study on NOx Emissions from Cement Kiln before and after Applying Multi-stage Combustion Technology (다단연소 기술 적용 전후 시멘트 소성설비의 NOx 배출 사례 연구)

  • Jae-Won, Choi;Ju-Ik Back;Jang-Jung Kim;Phil-Sung Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • The cement industry has been contributing to solve the wastes problem by using various combustible wastes as alternative fuel to replace natural coal. To use more alternative fuels such as waste plastics, in the cement manufacturing process, it is necessary to stably burn alternative fuels and reduce air emissions such as NOx. This study is a case study on the multi-stage combustion calciner process, which is a technology that decreases the amount of NOx while increasing the use of alternative fuels. This study is a case study on the multi-stage combustion process, a technology that reduces the amount of harmful air emissions such as NOx while increasing the use of alternative fuels. Along results of comparing before and after applying the technology to actual cement manufacturing facilities, the amount of coal consumption decreased by 38 %, waste plastics consumption increased by 122 %, and NOx emissions decreased by 17 %. Results show that increasing the use of alternative fuels and reducing NOx emissions by multi-stage combustion is effective.

Development of Production System and Properties of Ceramic Binder using Aluminosilicate Raw Material (세라믹 바인더 제조공정의 알루미노실리케이트계 원료 적용 시스템 및 세라믹 바인더 물성개발)

  • Park, Cheol;Joe, Sung Hyung;Kim, Kyung Su;Lim, Chae Yong
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.25-26
    • /
    • 2022
  • Coal ash generated from thermal power plants has been used as alternative raw material for cement production. But when using buried coal ash, careful attention is needed because it contains some amount of moisture and chlorides which can cause problems in production process. In this project, cement production process and quality control technology for using buried coal ash as cement raw material has been being developed.

  • PDF

A Study on Application of Desulfurization Technology in Cement Production Process (시멘트 생산 공정 내 탈황기술 적용 가능성 연구)

  • Youmin Lee;Chae-wook Lim;Teawoo Lee;Hyung-Suhk Suh;Jun-Ho Kil
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.3-15
    • /
    • 2024
  • Environmental awareness is rising worldwide. however, cement manufacturing facilities use recycled resources to improve raw material and fuel substitution rates, contributing to environmental issues such as waste disposal. The emission of sulfur oxides (SOx), an air pollutant, has been regulated by limestone as raw material in cement manufacturing. However, the impact of increasing use of recycled resources on future facility processes and environmental changes is unclear. Therefore, the cement manufacturing facilities require desulfurization-related technologies and research. In this study, we investigated the applicability of desulfurization technology to cement manufacturing facilities and demonstrated various approaches to applying this technology using byproducts generated in cement manufacturing.

The Study of Water Stability of MDF Cement Composite by Addition of Epoxy Resin and Manufacturing Process (Epoxy Resin 첨가 및 제조공정에 따른 MDF 시멘트 복합재료의 수분안정성 연구)

  • 노준석;김태진;박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The effect of epoxy resin on the water stability of HAC/PVA based MDF cement composite were stu-died through the three different forming methods calendering extruding and warm pressing. In prexing step the epoxy resin was added in 5-15wt% of cement weight. The 3-point flexural strength of each dry and wet specimen which were immersed in water during 3. 7, 14 days was estmated and the mi-crostructural change of epoxy resin-added MDF cement composite due to water immersion was charac-terized by scanning electron microscopy. As the addition amount of epoxy resin the im-provement of water stability of MDF cement composite was achieved in most case. Especially through the warm press forming method the effectiveness of epoxy resin addition to the water stability was enhanced. When the epoxy resin was added by 5wt% to 7wt% the optimum flexural strength and water stability

  • PDF

The CO2 Emission in the Process of Cement Manufacture Depending on CaO Content (시멘트 생산과정에 따른 CaO 함량과 CO2의 발생량)

  • Kim, Sang-Hyo;Hwang, Jun-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.365-370
    • /
    • 2013
  • In this study, contents of limestone in cement manufactured by six domestic plants for Portland cement were investigated in terms of the strength and its relation to the $CO_2$ emission due to limestone material and its physical properties in cement manufacturing process. the relationship among CaO content, compressive strength, and $CO_2$ emission was surveyed for the limestone quantity in decomposition reaction and the loss of limestone quantity contained in each cement. As a result of $CO_2$ emission calculation for unit cement, it was found that the $CO_2$ emission due to decomposition of limestone was occupied 67% of total emission quantity. Furthermore, there was a difference in $CO_2$ emission quantity depending on the cement manufacturing process management. Also, it was shown that fossil fuel usage and material loss had a major influence as main factors of $CO_2$ emission. An increase in the CaO content in cement resulted in an increase in the compressive strength. On the contrary, CaO content and compressive strength were reduced with the growth of loss quantity of limestone. It was verified that the material and process management were more effective than CaO yield in cement manufacturing for $CO_2$ emission with the growth of $CO_2$ emission quantity. Pozzolanic materials such as PFA and GGBS in concrete mix affected the price, $CO_2$ emission and development of strength of concrete.

Identification of the Environmentally Problematic Input/Environmental Emissions and Selection of the Optimum End-of-pipe Treatment Technologies of the Cement Manufacturing Process (시멘트 제조공정의 환경적 취약 투입물/환경오염물 파악 및 최적종말처리 공정 선정)

  • Lee, Joo-Young;Kim, Yoon-Ha;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.449-455
    • /
    • 2017
  • Process input data including material and energy, process output data including product, co-product and its environmental emissions of the reference and target processes were collected and analyzed to evaluate the process performance. Environmentally problematic input/environmental emissions of the manufacturing processes were identified using these data. Significant process inputs contributing to each of the environmental emissions were identified using multiple regression analysis between the process inputs and environmental emissions. Optimum combination of the end-of-pipe technologies for treating the environmental emissions considering economic aspects was made using the linear programming technique. The cement manufacturing processes in Korea and the EU producing same type of cement were chosen for the case study. Environmentally problematic input/environmental emissions of the domestic cement manufacturing processes include coal, dust, and $SO_x$. Multiple regression analysis among the process inputs and environmental emissions revealed that $CO_2$ emission was influenced most by coal, followed by the input raw materials and gypsum. $SO_x$ emission was influenced by coal, and dust emission by gypsum followed by raw material. Optimization of the end-of-pipe technologies treating dust showed that a combination of 100% of the electro precipitator and 2.4% of the fiber filter gives the lowest cost. The $SO_x$ case showed that a combination of 100% of the dry addition process and 25.88% of the wet scrubber gives the lowest cost. Salient feature of this research is that it proposed a method for identifying environmentally problematic input/environmental emissions of the manufacturing processes, in particular, cement manufacturing process. Another feature is that it showed a method for selecting the optimum combination of the end-of-pipe treatment technologies.