• Title/Summary/Keyword: 시멘트 고화제

Search Result 37, Processing Time 0.025 seconds

Convergent Study on the Preparation of Sludge Modified Soils of Inorganic Consolidation Soil (무기계고화재의 슬러지 개량토 제조에 관한 융합연구)

  • Han, Doo Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.157-162
    • /
    • 2017
  • Inorganic stiffening agents were prepared by mixing paper sludge incineration ash, blast furnace slag fine powder quicklime, anhydrous gypsum and fly ash. The main components of the solidifying agent developed for sludge treatment were SiO, $Al_2O_3$, $TiO_2$, $Fe_2O_3$, $Mn_2O_3$, CaO, MgO, $Na_2O$, $K_2O$, $P_2O$, and $SO_3$. Unlike cement, the developed solidifying agent did not contain $Cr^{6+}$, which is known as a carcinogen. Heavy metals and oil contaminated soil were mixed with solidifying agent and cured for 7 days and the heavy metal content was below the environmental standard. Sewage sludge cake, food waste and solidifying agent were mixed with each other, and after 7 days curing, soil component test showed that the heavy metal content was below the environmental standard. After mixing the sludge, solidifying agent and additive mixture into the beaker, the ammonia concentration was measured to be 0 after 3 days.

Study on Pre-treatment Method for Vitrification of Concentrated Wastes (농축폐기물 유리화를 위한 전처리 방안 연구)

  • Cho, Hyun-Je;Kim, Deuk-Man;Park, Jong-Kil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 2010
  • The solidification methods for powder wastes dried at CWDS(Concentrate Waste Drying System) in PWR have been studied in a variety of ways both at home and abroad. The solidification for these wastes has been performed using stabilization agents such as cement, paraffin and polymer. The applicability studies to maximize the reduction ratio of wastes and operational effectiveness for wastes treatment have been carried out, recently. It is necessary to pretreat the powder wastes before feeding wastes to vitrification facility because the fines flying brings about clogging of feeding pipes and off-gas treatment system or workers' exposure to radiation during maintenance. This paper describes an effective method for treatment of powder wastes to improve safety and stability of vitrification facilities.

Trichloroethylene (TCE) Removal Capacity of Synthesized Calcium Sulfoaluminate Minerals in Hydrated Cement-based Materials (합성 Calcium Sulfoaluminate계 시멘트 수화물의 Trichloroethylene (TCE) 제거능)

  • Ha, Min-Gyu;Ghorpade, Praveen A.;Kim, Jeong-Joo;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1463-1469
    • /
    • 2013
  • Portland cement used as binding material in combination of ferrous iron for reductive dechlorination of chlorinated organics is already widely studied topic by several researchers. However there is no clear evidence about the component solely responsible in cement for trichloroethylene (TCE) dechlorination. Many researchers suspect that the ettringite, monosulfate phases associated with hydration of cement are responsible active agents for TCE dechlorination. This study deals with synthesizing different pure crystalline minerals like ettringite and monosulfate phases of cement hydration and check individual phase's TCE dechlorinating capacity in combination with ferrous iron. The results indicated that the synthesized minerals showed no reduction capacity for TCE. The findings in the present study is significant as it shows that ettringite and monosulfate phases which were suspected minerals by previous researchers for TCE dechlorination are not reactive. Hence it is suspected that some other mineral or mineral form in cement phase could be responsible for TCE degradation.

Measurement of the Radiolysis Gases Generated in Several Waste Forms by External Irradiation (${\gamma}$-조사에 의한 방사성폐기물의 방사분해가스 발생량 평가)

  • Kwak, Kyung-Kil;Ryue, Young-Gerl;Kim, Ki-Hong;Je, Whan-Gyeong;Kim, Dong-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 2006
  • The cemented and paraffin wastes form which are incorporated the concentrated wastes, the cemented waste form which is incorporated the spent ion-exchange resins, and the miscellaneous waste(decontamination paper) were irradiated up to $10^{+8}$ rads at $5.43{\times}10^{+5}$ rads/hr with Co-60(72,023.9 Ci) as an external irradiation source. As a result, the radiolysis gases such as $H_2,\;CH_4,\;N_2,\;C_2H_6,\;O_2,\;CO\;and\;CO_2$, were measured in all the wastes. The major gas which was generated in all the wastes was hydrogen($H_2$). The volume of the generated gases showed a difference from $0.029{\sim}0.788\;cm^3.atm/1.1g$ according to the type of wastes, and more was generated in the cemented waste form incorporated a spent ion-exchange resin than in the other wastes. More hydrogen($H_2$) gas was generated in the decontamination paper waste than in the other wastes, and the G($H_2$) value was 0.12.

  • PDF

Variations in Heavy Metal Analytical Results and Leaching Characteristics of Coal Ash Recycled Concretes according to Sample Crushing Methods (분쇄방법에 따른 석탄재 재활용 콘크리트의 중금속 분석결과 및 용출특성 변화)

  • Lee, Jin Won;Choi, Seung-Hyun;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.429-438
    • /
    • 2018
  • Since concrete is a hardened aggregates of various materials, it needs to be crushed for chemical analyses. However, the effect of sample crushing on the analytical results has not been precisely assessed till today. In this study, we prepared concrete test pieces using Portand cements and fly ashes as binding materials, and ponded ashes and sands as aggregates and analyzed the heavy metals of the test pieces using Standards for Fair Testing of Soil Contamination (SFTSC) and Wastes (SFTW). For this, each test piece was partially crushed at first and sieved for separation of grains of <0.15 mm, 0.15-0.5 mm, and 0.5-5 mm from the same crushed samples (Crushing Method I). Results of those samples using SFTSC showed a clear trend that analyzed heavy metal concentrations are higher in the finer fractions. Particularly, fractions with <0.15 mm indicated much higher concentrations than the theoretical ones, which were calculated based on the concentrations of individual materials and their mixing fractions. In contrast, the analytical results were generally comparable with the theoretical ones when the test pieces were totally pulverized such that all the crushed grains were <0.15 mm in size (Crushing Method II). These results are associated with the fact that cement materials and fly ashes, which are high in heavy metals relative to other materials, are enriched in the fine fractions. The analytical results using the SFTW derived very low concentrations in most of parameters and did not indicate the dependence of concentrations on the crushing methods due to using distilled water as leaching agent.

A Study on Engineering Characteristics of Geotechnical Material Using By-Product Lime and Pieces of Waste EPS Beads (석회부산물 및 폐 EPS beads를 활용한 지반재료의 공학적 특성에 관한 연구)

  • Bang, Yoon-Kyung;Park, Min-Yong;Yoon, Chang-Jin;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2004
  • The purpose of this study is to provide the ways of recycling of by-product limes as lightweight fill, backfill materials, and lightweight blocks by performing experimental study. New lightweight fill materials and blocks were devised by mixing by-product lime, weathered granite soil, small pieces of waste EPS, and Portland cement. Physical, geotechnical, and environmental properties of the lightweight mixed soils and blocks were analysed by laboratory experiments for mixed samples manufactured with various mixing ratios. KMS tests were also performed to evaluate the concentration variation of the chemical components of the light weight blocks leachates. It is expected that this study will contribute to resolving the problem of by-product lime disposal as well as to recycling the by-product limes as fill materials and blocks.

사용후연료의 건식처리 발생 hull 폐기물의 처리(II)

  • Kim, Jun-Hyeong;Kim, In-Tae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.177-177
    • /
    • 2009
  • 사용후 핵연료의 건식처리 시 핵연료 다발을 절단하여 voloxidation 즉 휘발산화처리를 하면 고온에 의해 분리가 가능한 핵분열생성물의 분리와 우라늄의 산화에 의한 부피팽창으로 핵연료가 쪼개져서 입도가 작아지고 또한 핵연료가 피복재에서 쉽게 박리되게 된다. 그 결과 폐기물 처리 시에 발열핵종으로 폐기물의 저준위화시에 분리가 요망되는 Cs-137이 분리되는 장점이 있어 습식 재처리에 있어서도 바람직하다. 건식처리에 있어서는 voloxidation 으로 처리된 피복재에는 금속 지르코늄에 불순물로 함유된 우라늄의 의한 방사화 생성물과 피복재 표변에 부착/침투한 방사화 생성물이 방사능을 갖게 된다. 이러한 부착된 TRU 잔류물은 통상 1% 미만으로 알파핵종의 방사능이 원자로에서 배출시에는 고준위 기준치의 약 100배 수준이었다가 30년 냉각후에는 약 1/10 수준으로 저준위화 된다. 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화로 생기는 방사능은 고준위 기준치의 10% 를 넘지 않아서 피복재의 저준위화시에 고려할 필요가 없다. 발생열은 방출시에 고준위 기준치의 약 30 배 수준에서 5년 냉각후에는 기준치 미만이 되며 30년후에는 1/8000 정도로 저준위화 된다. 사용후 핵연료를 습시처리시에 발생하는 고준위 폐기물 중 약 1/4 가 피복재 (hull) 임을 고려하면 피복재의 저준위화는 사용후 연료의 건식처리에 있어서도 필수적인 과정이다. 특히 미국의 고준위 폐기물 처분장 Yucca Mt.의 포기와 우리의 고준위 폐기불 처분장이 공론화되는 싯점에서 저준위화는 매우 필요한 기술이다. 피복재는 방사성 물질의 침투두께가 0.01mm 미만이 대부분으로 저준위화에는 표면제염에 의한 저준위화가 주로 연구되어왔다. 표면제염에 의한 저준화는 이온 빔, laser에 의한 방법, dry ice 분사에 의한 방법이 시도되었다. 염소기체를 이용하여 지르코늄의 산화막을 제거하고자 하였으나 이 산화막이 안정적이어서 표변의 연마, 아크릴 칼의 사용, 표면을 눌러서 처리하는 등 전처리하여서 염소기체 반응에 의한 표면제거 실험이 가장 효과적임이 실험적 결과이었다. 이러한 전처리로 방사능을 1/100 수준으로 낮춘다고 하더라도 지르코늄 금속중에 불순물로 함유된 우라늄의 방사화에 의해 중저준위 폐기물의 범주에서 벗어나지 않으므로 재활용에는 제한이 있다. 또한 전처리(표면제염)하여 분리되는 고준위는 다른 고준위 염폐기물과 함께 처리하여 발열 핵종을 제거하면 중저준위화가 가능하다. 저준위화 된 hull폐기물에는 지르코늄 금속에 불순물로서 함유되어있는 우라늄에 의한 방사능을 갖는데 이들의 제거나 분리는 지르코늄 합금 피복재 원료물질에 불순물로 함유하는 우라늄의 함량을 낮추는 것과 유사한 문제이다. 현재까지 지르코늄합금 피복재에 우라늄이 불순물로 함유된 것을 사용함으로 원자로내에서 방사화되어서 방사능을 갖게 되는 것은 피할 수가 없다. 따라서 저준위화 처리된 피복재는 장기 보관으로 방사능을 감쇠시켜서 재활용하도록 한다. 처리 방법으로는 초고압 압축저장, 시멘트 고화, 합성암석에 의한 고화법 등으로 장기간 보관 후에 금속으로서 재활용한다.

  • PDF